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Abstract—Traffic congestion has has become a global challenge
with severe economic and safety consequences. It is caused by
infrastructure limits but also by diverse human driving behaviors.
Traditional car-following (CF) models capture speed and spacing
dynamics but limited attention is paid to representing driver
heterogeneity. This study addresses this gap by developing a style-
aware CF model that jointly learns driving-style embeddings
and trajectory prediction within a Transformer framework. The
proposed model consistently outperforms the benchmark CF
models in long-duration evaluation. Remarkably, the learned
style embeddings reveal four interpretable groups along aggres-
siveness and stability dimensions.

The paper also relates the driving styles to macroscopic
properties of the traffic stream through platoon-scale simula-
tions. Results show a clear stability–efficiency trade-off: sta-
ble–conservative styles buffer congestion but increase fuel con-
sumption through prolonged low-speed operation, while aggres-
sive styles appear fuel-efficient in isolation. Unstable driving style
destabilizes the traffic flow the most. Scattered trucks throughout
the traffic stream improve stability, whereas clustering trucks
increases the probability of a traffic breakdown. These findings
highlight how integrating driving style can improve both car-
following prediction and its impact on traffic breakdown.

Index Terms—Driving style, Car-following, Traffic congestion,
Human factors, Data-driven

I. INTRODUCTION

Traffic congestion remains a global challenge with seri-
ous economic and safety consequences. In the Netherlands,
congestion-related economic losses rose by 49% in 2023 com-
pared to 2022 (Rijkswaterstaat, 2024), reflecting the growing
severity of traffic delays and their societal impact. While
infrastructure limitations such as lane drops and sags are often
blamed, driving behavior also plays a crucial role in shaping
congestion dynamics. Differences in aggressiveness, following
distance, and reaction time can destabilize traffic flow, leading
to erratic trajectories, abrupt braking, and a higher risk of rear-
end collisions (SWOV, 2022).

These behavioral factors directly affect the onset of traffic
breakdown, which typically occurs when the incoming flow
exceeds the effective capacity of the road. Instead of solely ex-
panding physical infrastructure, improving behavioral coordi-
nation—such as maintaining shorter yet safe headways—offers
a complementary path to mitigate congestion and enhance
stability.

Given the prominent role of driving behavior in congestion,
researchers have long turned to car-following (CF) models to
understand the microscopic interactions between vehicles. CF
models aim to capture the response of a following vehicle
to the movements of its leader on a single lane. Traditional
models (Brackstone and McDonald, 1999) primarily focus on
quantifiable states such as speed, acceleration, and position.

However, these models often struggle to account for the full
spectrum of human driving behaviors, which are far more
complex and varied than can be represented by a handful of
parameters (Higgs and Abbas, 2015).

Recent advances in data collection and analysis have spurred
the development of data-driven CF models. Unlike tradi-
tional approaches that rely on rigid mathematical formulations,
data-driven models can learn directly from high-resolution
car-following data. This enables them to capture nuanced
driving behaviors—such as individual variations in reaction
time, acceleration patterns, and headway preferences—that
are pivotal in understanding and mitigating traffic breakdown
(Papathanasopoulou and Antoniou, 2015). By better repre-
senting the complexity of real-world driving, these human-
like models provide deeper insights into how different driving
styles contribute to traffic oscillations and bottlenecks. This
paper aims to propose a driving style-aware car-following
model, classify driving styles, and investigate the impact of
revealed driving styles on traffic flow.

This paper is structured as follows. Section II reviews
prior work on driving style, conventional and data-driven car-
following (CF) models, and breakdown mechanisms, identify-
ing key research gaps. Sections III–V present the methodology,
dataset processing, and the proposed style-aware CF model,
followed by platoon-scale experiments (Section VI) and their
results (Section VII), while Section VIII concludes with main
findings and contributions.

II. LITERATURE REVIEW

Congestion occurs when traffic demand exceeds road ca-
pacity, often triggered by incidents or bottlenecks. Traffic
oscillations may arise from longitudinal instabilities (e.g.,
reaction or spacing errors) or lateral maneuvers, yet their
growth and decay are largely independent of initial triggers
(Zheng et al., 2011). Later studies attribute these dynamics
to driving patterns rather than simple acceleration asymmetry,
showing that certain behavioral tendencies—such as aggres-
siveness or timidity—amplify wave propagation (Laval and
Leclercq, 2010). However, most prior research still classifies
behavior in coarse terms (e.g. aggressive and timid) and
relies primarily on analytical or model-based approaches (e.g.,
Newell’s CF model), instead of experimental validation using
model-driven simulations. Identifying distinct driving style
groups and building up a model-driven experiment validation
is therefore essential.

Driving style differs from driving behavior, which is
context-dependent (Sagberg et al., 2015), and instead reflects
a driver’s longer-term preference—such as maintaining shorter



headways. Yet, there remains no consensus on how driv-
ing styles should be grouped. Clustering based on stated-
preference surveys identifies multiple style categories (ranging
from a few to several dozen) and shows that truck driving
tends to be more homogeneous than passenger-car driving
(Higgs and Abbas, 2015; Chen and Chen, 2019). However,
trajectory-based analyses (Laval and Leclercq, 2010) often rely
on coarse classifications (e.g., timid vs. aggressive), leaving a
finer-grained characterization of driving styles unresolved.

Rather than extracting styles independently of the car-
following (CF) context (Chen and Chen, 2019), our approach
integrates style learning into the CF modeling process. The
premise is that driving style can act as an external latent factor
to enhance CF prediction, while improved CF accuracy, in
turn, refines style discovery. Accordingly, the style extractor
and CF model are trained jointly within a unified framework.

Data-driven CF modeling has been extensively explored
over the past decades. Early models using MLPs (Simonelli
et al., 2009; Colombaroni and Fusco, 2014) or fuzzy logic
(Chong et al., 2013) demonstrated potential but lacked tem-
poral awareness . Deep sequence models such as RNNs,
LSTMs, and GRUs significantly improved predictive per-
formance by capturing reaction delays, heterogeneity, and
behavioral asymmetry (Zhou et al., 2017; Huang et al., 2018;
Wang et al., 2019), while sequence-to-sequence designs ex-
tended prediction horizons (Ma and Qu, 2020). More re-
cently, physics-informed hybrids have enhanced robustness
and interpretability by constraining neural networks with CF
principles (Mo et al., 2021; Geng et al., 2023). Nevertheless,
two key challenges persist: driving-style clustering is typically
performed outside model training, weakening the coupling
between learned representations and behavioral grouping.

To address these gaps, we proposes a style-aware CF
training framework. This jointly learns driving styles and car-
following dynamics, enabling new style discovery. This will
be used to link microscopic driving behavior to macroscopic
traffic performance and energy efficiency.

III. METHODOLOGY

The overall approach is that [first embedder, then .... etc,
linking also the sections of this chapter]

A. Style Embedder

Following Sagberg et al. (2015), the proposed approach
defines driving style as a habitual and time-independent way
of driving, in contrast to driving behavior, which reflects
context-dependent reactions. We assume that style remains
stable across time, whereas behavior may vary with traffic
conditions.

In this study we propose a data-driven embedder model
that directly learns latent driving style representations from
trajectory data.

1) Style-related Features
Informed by human-factor studies, the following quanti-

ties are incorporated as style-related features: average time
headway h̄ (aggressiveness, proficiency), average reaction time

Fig. 1: Integrating the style embedding (token) into the Trans-
former Car-following model

τ̄ (aggressiveness, anticipation), their variabilities σh and
στ (proficiency, distraction), and vehicle lengths lF and lL

(truck–car differences). Among these, h and τ are not directly
observable in the CF dataset, therefore we need to extract
them.

Reaction time τ is estimated using a dynamic time warping
(DTW) method, following the approach of Sharma et al.
(2018). DTW is suitable for this task as it flexibly aligns
leader and follower speed profiles, with the temporal offset
reflecting the follower’s response delay. However, when both
vehicles are cruising at nearly the same speed, DTW may yield
unrealistic results. To address this, an upper bound is imposed,
τ ≤ ∆x/w, where w is fixed at -15 km/h.

Time headway h is also included as a style-related feature,
given its central role in classical car-following models.

Note that both τ and h are extracted as time series and
directly used as input features for the style embedder. For inter-
pretability, however, their means and variances (τ̄ , h̄, στ , σh)
are employed to analyze the classification results and better
characterize the identified styles.

2) Architecture of Style Embedder
The architecture builds on a Transformer encoder with an

attention mechanism to preserve temporal dependencies such
as reaction delays. As part of the style-aware CF framework
(see Figure 1), the style embedder is jointly trained with the
CF predictor, allowing it to benefit from the prediction loss and
ultimately enhancing the overall accuracy of the car-following
model.

The integration of the style embedding is shown in Figure 1,
where the style token is prepended to both the encoder and
decoder sequences and participates in training. This design
allows the attention mechanism to dynamically decide whether
and how to utilize the style information.

It outputs a fixed-length, time-independent style token that
compactly represents driver traits while accommodating tra-
jectories of arbitrary length. This embedding serves both as



Fig. 2: Definitions of inputs and outputs of the Transformer
model (also of the Transformer part in the Style-aware CF
model)

input for downstream car-following models and as a basis
for clustering analyses to examine whether consistent and
interpretable driving style categories emerge.

B. Style-aware CF Model

1) Architecture
Based on the plain Transformer model, the Style-aware CF

model introduces an additional style embedding. This token,
generated by an independent Transformer encoder (the style
embedder), encodes time-independent driving style informa-
tion and is integrated with the encoder and decoder outputs to
regulate the model’s predictions.

As shown in Figure 1, the model takes three inputs: the
encoder sequence, the decoder sequence, and a style series.
The style series, originally temporal, is transformed by the
style embedder into a time-independent token and prepended
into the CF Transformer. This design enables the embedder
to be trained jointly, producing two outputs: (i) the style
embedding, applicable to clustering and behavioral analysis,
and (ii) the predicted acceleration for car-following tasks.
The attention mechanism adaptively determines how style
information is utilized, which can later be inspected through
attention matrices.

2) Inputs and Outputs
Figure 2 depicts the segmentation of a single training

sample. The historical window Thist and prediction window
Tpred are separated by a dashed line, while the label window
Tlabel spans both. The decoder can only access past information
because the causal mask (Vaswani et al., 2017), hiding all
future leader features during prediction. Conversely, follower
features in Tpred are replaced with historical averages within
the Thist to prevent any leakage of future information.

The key difference from the plain CF Transformer is the
additional style series input (Figure 1), constructed from
features (τt, ht,∆xt, v

F
t ) (Table I). While τt and ht represent

driving style, ∆xt and vFt capture regime information. During
training, vFt in Tpred is masked. A structured summary of in-
puts, outputs, and model configuration is provided in Table II.

C. Model Training

1) Details
The Style-aware CF model was trained on a workstation

equipped with an Intel i7-12700K CPU, an NVIDIA RTX

3070Ti GPU (8 GB VRAM), and 32 GB RAM, using Py-
Torch 2.1 with CUDA 12.1. Training was conducted for 30
epochs with a batch size of 64. The Adam optimizer was
employed with an initial learning rate of 10−4 and a weight
decay of 10−5. Kinematic position loss (see Equation 1) was
used as the training objective, and a step-based learning rate
scheduler reduced the learning rate by a factor of 0.1 every
10 epochs. See Table II for hyper-parameter details.

On this setup, the full training required approximately 26
minutes. Model checkpoints were saved according to the low-
est validation loss, and all experiments were run with a fixed
random seed, 42 in this training, to ensure reproducibility.
The training process demonstrated stable convergence, with
validation loss plateauing after 25 epochs.

All code and scripts used for model training, evaluation,
and simulation are publicly available at https://github.com/
liheng423/style-cf.

2) Loss Function
Following the kinematic model in Equation 1, position is

obtained by double integration of acceleration, the model’s
output. The loss is defined on position accuracy, which im-
plicitly requires consistent speed and acceleration predictions.
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state at the last step before prediction. This position-based
MSE enforces physical consistency and prevents unrealistic
accelerations, leading to stable and behaviorally plausible
outputs.

D. Model Testing Framework
1) Extending to Long-duration Simulation
The Style Transformer and benchmark models are trained

as short-duration predictors with horizons of only a few
seconds (e.g., 4 s for the Style-aware CF). This design reduces
computational cost, but strong short-duration performance may
not generalize to longer horizons, where errors accumulate.
Since we focuses on driving style and congestion formation,
long-duration prediction offers a stringent test of model gener-
alization and a robust basis for traffic breakdown replication.

To extend short-duration models to longer horizon, a recur-
sive prediction framework is applied (Figure 3). The long-
duration trajectory is generated by repeatedly shifting the
prediction window forward by Tpred. The first history segment
is initialized with ground truth, but subsequent windows in-
creasingly rely on the model’s own outputs. Given the 90-
second sequence length, the effect of the initial ground-truth
input is negligible in the long run.

https://github.com/liheng423/style-cf
https://github.com/liheng423/style-cf


Fig. 3: Recursive prediction over time

TABLE I: Driving style-related car-following quantities

Symbol Quantity Related human factors

h̄ Average time
headway

Reflects aggressiveness and possi-
bly driving proficiency

τ̄ Average reaction
time

Associated with aggressiveness,
driving proficiency, and temporal
anticipation

στ Standard
deviation of
reaction time

Related to driving proficiency and
distraction, as variability may in-
dicate inconsistent behavior over
time

σh Standard
deviation of
time headway

Also associated with driving pro-
ficiency and distraction, similar to
στ

lF Length of fol-
lower vehicle

Truck drivers exhibit different be-
havior compared to passenger car
drivers (Ossen and Hoogendoorn,
2011)

lL Length of leader
vehicle

Driver behavior may differ when
following a truck rather than a pas-
senger car

The car-following simulation algorithm employs recursive
predictive modeling to derive the trajectory of a following
vehicle, contingent upon the motion dynamics of the leading
vehicle. This process incorporates a sliding history window
alongside recursive input updates. The implementation of
this simulation facilitates the assessment of performance over
extended time periods.

After visualizing the clustering results, it is necessary to
interpret the behavioral characteristics of each group. To
this end, Table I summarizes the style-related CF indicators,
which are constructed based on human factors in car-following
(Sagberg et al., 2015). These quantities capture aggressive-
ness, reaction consistency, distraction, and the influence of
vehicle types, providing a meaningful basis for distinguishing
driving styles across clusters. To verify that these differences
reflect genuine behavioral variations rather than artifacts of the
learned embedding space, token-replacement experiments are
performed: the style and vehicle-type tokens of each sample
are swapped with those from other groups, and the resulting
behavioral changes are compared.

2) Incorporating Style in Testing
Different models require different input structures, so a con-

sistent evaluation setup is needed to ensure fair comparison.
For non–style-aware models (LSTM, plain Transformer, and
IDM), explicit style information is not used; instead, average-
style representations are adopted. In particular, the IDM is
calibrated with the mean parameter values from all training
trajectories (Table III). For the Style Transformer, style infor-
mation is incorporated through group-specific average embed-
dings. To obtain these, 30% of the long test trajectories are
used for style learning, as their 90-second duration yields more
stable representations. The data are evenly sampled across
groups to avoid bias. Meanwhile, clustering is performed using
the learned embedder and k-means on the training set, which
contains non-overlapping trajectories from the same set of
vehicles. Since the training dataset covers all vehicle IDs in
the test set, no trajectory lacks a style label. The final group-
average embeddings are then directly injected into the model,
bypassing the embedder during inference. The entire process
is summarized in Figure 4.

E. Benchmark Models

Three models are considered in this study: the rule-based
Intelligent Driver Model (IDM), a Long Short-duration Mem-
ory (LSTM) network, and a Transformer-based model. An
overview of the hyperparameters, along with the model inputs
and outputs, is provided in Table II.

The IDM serves (Treiber et al., 2000) as a baseline, simulat-
ing acceleration based on current velocity, spacing, and leader
speed. To ensure fair comparison, the IDM is calibrated on
the same training dataset using a genetic algorithm (Mitchell,
1996), which estimates parameters per car-following pair. For
benchmarking, the IDM is constrained to uniform parameters
across all pairs. Therefore, average values from the calibrated
distribution are adopted as the final setting (Table III). Cali-
bration is performed on 1000 randomly sampled trajectories
using the Genetic Algorithms.

The LSTM model (Hochreiter and Schmidhuber, 1997) uses
a 6-second historical window with features including vehicle
velocities, spacing, and lengths to account for heterogeneous
vehicle types. It predicts a sequence of accelerations but cannot
access future leader behavior due to the sequential structure,
limiting its long-duration prediction ability.

The Transformer model (Vaswani et al., 2017) extends
this by incorporating future leader behavior through a label
window while masking follower movements to prevent data
leakage. It enables longer prediction horizons and better han-
dles long-range dependencies, though it requires careful input
segmentation and masking design.

IV. DATA USED

A. Data Source and Requirements

For the study we use the Zen traffic dataset, providing
vehicle trajectories from freeways. It includes free-flow and
congestion states. We remove trajectories passing through



Fig. 4: Training and testing data handling involving style information

TABLE II: Detailed parameters in training process (⟨vF ⟩Tlabel

indicates the average value of vF in the label window)

Param. LSTM Transformer Style-aware
CF IDM

Hyper-parameter Setting

LR 0.001 0.001 0.001 -
Batch 64 64 64 -
Epochs 20 30 30 -
Dropout 0.0 0.1 0.1 -
Activation Sigmoid ReLU ReLU -
MaxNorm 10.0 10.0 10.0 -
Optimizer Adam Adam Adam -

Data Segmentation Setting (sec)

Tpred 2 4 4 0.1
Thist 6 6 6 0.1
Tlabel - 4 + 4 4 + 4 -
Thist - - 6 -

Features

History vF ,∆v,∆x, lF , lL vF , vL,∆x

Labelhist - vL, vF -
Labelpred - vL, ⟨vF ⟩Tlabel -
Style - - (τ, h,∆x, vF ) -
Output aF aF aF aF

TABLE III: Average calibrated IDM parameters (Zen dataset)

vF0 ∆x0 h0 amax b

24.70 m/s 1.70 m 1.19 s 1.70 m/s2 2.53 m/s2

weaving areas or changing lane and select only pairs that have
a constant leader throughout the analysis time.

Before usage, we enforce enforce kinematic consistency of
the data. using Kalman filter.

Subsequently, we perform validity checks on headway,

terminal position error, and acceleration to remove physically
implausible samples. These procedures yield a clean and
dynamically consistent set of car-following segments that serve
as the foundation for further analysis.

In this section, we instead examine the distribution of
vehicle types in the dataset to demonstrate that the model can
generalize its learned behavior to truck-following cases during
testing (see Table IV)

1) Car-following Model Dataset
Train & Validation Dataset (Short-duration CF seg-

ments): The processed short-duration dataset contains 44,207
car-following pairs, with 38,176 passenger-car (l < 7.5m) fol-
lowers and 6,031 truck followers (l > 7.5m), thus preserving
vehicle heterogeneity. Both velocity and acceleration distribu-
tions fall within realistic ranges, consistent with Montanino
and Punzo (2015).

TABLE IV: Number of vehicle types in the processed datasets
(short- and long-duration CF segments, unit [pair])

Category Train Test

Truck–Truck 1,786 84
Truck–Passenger Car 7,944 686
Passenger Car–Truck 4,245 194
Passenger Car–Passenger Car 30,232 3,409
Total (Truck Followers) 6,031 278
Total (Passenger-car Followers) 38,176 4,095
Grand Total 44,207 4,373

Test Dataset (Long-duration CF segments) : The test dataset
is constructed with a 90-second time window, yielding 2,640
samples after filtering. In terms of its speed distribution,
it covers traffic states from congestion to free flow, ensur-
ing consistency with the training set. The vehicle composi-
tion (2,519 passenger-car followers and 121 truck followers)



Fig. 5: Clustering of driving style embeddings

TABLE V: Cluster-wise summary statistics

P1 P2 P3 P4

τ̄ 1.77 ± 0.39 2.00 ± 0.42 2.18 ± 0.40 1.71 ± 0.40
h̄ 1.31 ± 0.33 1.43 ± 0.28 1.65 ± 0.22 1.12 ± 0.30
∆x̄ 15.11 ± 4.87 19.73 ± 5.30 21.14 ± 5.06 14.63 ± 4.66
v̄F 11.68 ± 2.69 13.68 ± 2.75 12.76 ± 2.68 13.14 ± 2.84
στ 1.01 ± 0.19 1.14 ± 0.17 1.14 ± 0.15 1.04 ± 0.20
σh 0.28 ± 0.12 0.40 ± 0.44 0.40 ± 0.17 0.30 ± 0.09

Count 1187 383 508 915

largely matches the training data, though truck-follower sam-
ples remain limited due to the short trajectory duration.

V. EMBEDDING AND CF MODEL EVALUATION

Based on the trained CF model and the style-embedder, this
section evaluates two aspects: (i) the quality of the clustering
and the influence of the extracted style embeddings, and (ii)
the joint performance of the CF model with the style embedder
to assess how these embeddings enhance prediction accuracy.

A. Driving Style Clustering

The style embedding (token) is time-independent, allow-
ing direct clustering in the embedding space. To avoid data
leakage, clustering is conducted on the long-duration dataset,
which is independent of training/validation data and contains
2519 passenger-car follower samples.

K-means is used to partition embedding vectors into K
clusters by minimizing within-cluster variance. In this study,
it groups segments with similar style representations, thereby
identifying distinct driving patterns.

Table V shows the properties of the 4 found clusters. They
are visualized in Figure 5 in two dimensions. P1 and P4 appear
compact and dominant, suggesting stable styles, whereas P2
and P3 show greater variability. Overall, results indicate that
driving style lies on a behavioral spectrum rather than discrete
categories, consistent with Sagberg et al. (2015).

The clusters reveal distinct behavioral patterns (Table VI).
P1 shows short headway and small spacing, suggesting steady

yet impatient driving. P2 has longer reaction and high vari-
ability, reflecting occasional hesitation. P3 features the longest
headway and spacing, consistent with defensive and conser-
vative driving. P4 reacts fastest but with instability, aligning
with aggressive and impulsive behavior.

TABLE VI: Interpretation of clusters

Cluster Style Key features Human factors

P1 Stable-aggressive Short h̄, small
spacing, low σh

Mild aggressive-
ness, speed focus

P2 Unstable-timid Longer τ̄ , higher
σh

Occasional
hesitation,
cautious balance

P3 Stable-timid Longest τ̄ ,
largest spacing

Most cautious,
safety-oriented

P4 Unstable-
aggressive

Lowest h̄, lowest
τ̄ , higher σh and
στ compared to
P1

Aggressive,
unstable control

B. Driving Style Embedding Validation

The style embedder is trained jointly with the car-following
model, enabling the extraction of representations that improve
prediction accuracy. We now validate whether the learned
embeddings are functionally meaningful and behaviorally in-
terpretable. Three complementary tests are conducted.

1) Truck as Follower
Since truck samples are scarce in the dataset, we emulate

them by setting follower length lF = 10 m. As shown in
Figure 6, this modification consistently yields shorter reaction
times while time headway remains largely unchanged. This
indicates that trucks at low speeds do not follow differently
in terms of headway but react faster, consistent with Ossen
and Hoogendoorn (2011), which links such behavior to pro-
fessional training.

2) Cross-over Test: Effectiveness of the Embedding
To separate driving style from scene effects, we replace

embeddings with cluster centroids (Figure 7). Each row corre-
sponds to the original cluster, and each column to the substi-
tuted embedding. Shifts in time headway h̄ across substitutions
confirm that embeddings encode behavioral traits independent
of context. In particular, P2 and P3 induce the strongest
changes, consistent with their interpretation as conservative
and aggressive styles (Table VI). These results demonstrate
that embeddings systematically modulate car-following behav-
ior.

C. Model Testing Results

The long-duration prediction task provides a common eval-
uation framework across all models. To assess performance,
we report multiple error metrics, their temporal evolution,
example trajectories, and attention weights.

1) Error Statistics
Prediction performance is evaluated using MSE, MAE, and

RMSE of follower position xF
t , computed per trajectory. This

choice reflects the loss design (Equation 1) and is widely used
in CF studies (Huang et al., 2018). In addition to mean and
standard deviation, quartiles (Q1–Q3) are reported to capture



Fig. 6: Truck emulation (lF = 10 m) across clusters

Fig. 7: Embedding substitution validation (cluster centroids)

Fig. 8: Distribution of position error metrics

distributional properties under different traffic regimes. Results
are summarized in Table VII, and distributions are shown in
Figure 8. Overall, the Style-aware CF achieves the lowest
average errors, while LSTM performs worst.

TABLE VII: Performance statistics of different models on
prediction metrics (rounded to 2 decimals).

Metric Statistic Style-
aware

Trans. LSTM IDM

MSE
Mean 33.71 32.71 53.33 41.16
Std Dev 41.18 33.89 47.65 48.79

RMSE
Mean 5.17 5.21 6.79 5.64
Std Dev 2.68 2.35 2.69 3.06

MAE
Mean 4.24 4.27 5.58 4.83
Std Dev 2.35 2.03 2.33 2.84

Fig. 9: Evolution of position MAE over time

2) Error Evolution
Recursive prediction causes error accumulation. Figure 9

shows that all models exhibit increasing MAE with time, but
LSTM diverges fastest and has the largest variance. In contrast,
the Style Transformer and IDM remain more stable, reflecting
the benefit of incorporating style information—either through
tokens or calibrated parameters.

3) Example Trajectories
Two 90-second test cases illustrate model behavior (Fig-

ure 10). IDM responds without delay due to its memoryless
design, while the Transformer-based models capture realistic
reaction delays. Style Transformer and IDM, both guided by
style information, show more consistent spacing and smoother



Fig. 10: Trajectory comparison (Sample 200, slanted term:
−17.5t)

Fig. 11: Attention matrix example (Sample 233)

accelerations, whereas the plain Transformer and LSTM are
more volatile and sensitive to short-term fluctuations.

4) Attention Matrix
Figure 11 shows attention maps, where the y-axis denotes

query positions (output) and the x-axis lists key positions
(input) starting with the prepended style token followed by
input steps (1–6 s). In the decoder cross-attention, the style
token is almost ignored for near-term queries (< 2 s) but
becomes strongly attended after roughly 2–2.5 s, providing
global guidance for longer-horizon prediction, while decoder
self-attention remains diffuse yet strictly causal, using only
past and already generated steps within the prediction window.
By contrast, encoder self-attention exhibits a sharp autore-
gressive diagonal over the entire history, emphasizing its role
in encoding strong temporal dependencies and preserving
sequential structure.

VI. PLATOON EXPERIMENT SETUPS

The following sections investigate how different driving
styles, alone and in combination, influence platoon dynamics
and breakdown, based on the unified car-following model and
four style categories introduced earlier.

A. Experiment Framework

1) Overview
We extend the simulator to the platoon scale, where out-

comes depend on both (i) the leader trajectory and (ii) platoon
composition. Leader trajectories serve as control variables,
while platoon composition—including style mix, vehicle type,
and ordering—determines collective response.

a) Setup: Define platoon composition and select a leader
trajectory covering diverse regimes.

b) Assemble: Sample vehicles by style class and assign the
chosen leader.

c) Simulate: Run for 240 s and record outputs.
d) Analyze: Compute indicators and assess results.

B. Metrics for Traffic Breakdown

In this study, multiple indicators are adopted to describe the
magnitude of the traffic breakdown and the effect of driving
style on traffic flow (Table VIII). The following sections
introduce their calculation and characteristics.

Indicator Unit Sig. Test Description

Delay [s] two-way
ANOVA

Time lost relative to Newell base-
line

ST [s] two-way
ANOVA

Total time with v < 1 m/s, cen-
tered per leader

FC [L/km] two-way
ANOVA

Fuel used per kilometer

wacc [km/h] t-test Speed of accelerating waves
wdec [km/h] t-test Speed of decelerating waves
qmax [veh/h] WLS t-test Capacity from fitted FD
kjam [veh/km] WLS t-test Jam density from congested inter-

cept
kcrit [veh/km] WLS t-test Critical density (triangular FD)
b [km/h] WLS t-test Slope of congested branch (back-

ward wave speed)

TABLE VIII: Indicators employed in the platoon experiments
(ANOVA: analysis of variance, WLS: weighted least squares)

1) Trajectory-level Measures
To evaluate the overall performance of a platoon, the

following indicators are designed. Note, for each indicator,
two-way ANOVA tests overall differences across style groups.

Delay is defined as the excess travel time relative to a
disturbance-free benchmark (Newell’s model):

Delay = TTSactual − TTSbenchmark, (2)

where TTS is computed as the cumulative time vehicles
remain upstream of the boundary L.

Standstill time (ST) measures immobility as the cumulative
time vehicles operate in the standstill regime:

ST = ∆t ·
N∑

n=1

K−1∑
k=0

1{vk
n<1 m/s,−0.1<ak

n<0.1}, (3)

with vkn and akn denoting the speed and acceleration of vehicle
n at time step k.

Fuel Consumption (FC): Traffic breakdowns increase en-
ergy costs due to stop-and-go patterns, which cause frequent
acceleration and deceleration, raising fuel consumption and en-
vironmental impact. Evaluating energy efficiency with break-
down dynamics connects operational stability to sustainability.
Fuel consumption is estimated using the VT-Micro model,
which predicts rates based on speed v(t) and acceleration a(t)
with the equation:

JFC(t) = exp
(
ṽ(t)⊤PFCã(t)

)
,



where ṽ(t) = [1, v, v2, v3]⊤ and ã(t) = [1, a, a2, a3]⊤. This
model, using calibrated coefficients from Zegeye et al. (2013),
effectively captures stop-and-go dynamics by distinguishing
acceleration regimes.

Statistical Testing is usde to compare indicator values fairly
across groups. The analysis must control for differences in
leader movements, since the leader’s trajectory affects follower
behavior. We therefore apply a two-way ANOVA without
interaction terms, written as a linear model with treatment
(reference) coding:

ypℓi = µ+
∑
p̸=p0

αpDip +
∑
ℓ̸=ℓ0

γℓDiℓ + εpℓi, (4)

where ypℓi is the response in platoon p under leader en-
vironment ℓ. The dummy variables Dip and Diℓ capture
mean differences relative to the reference platoon p0 and
reference leader ℓ0. Thus, αp measures how the indicator in
platoon p differs from the reference after accounting for leader
effects, and γℓ reflects the shift of indicator introduced by
leader ℓ. Significance is evaluated using the associated t-tests,
consistent with the standard two-way ANOVA framework.

2) Traffic Waves
Traffic waves, propagating from downstream to upstream,

mark transitions between free-flow and congestion. A decel-
erating wave signals breakdown onset, while an accelerating
wave reflects recovery. This study focuses on wave speed—the
upstream propagation velocity—since it is closely tied to
driver behavior (Chen et al., 2014). Other characteristics (e.g.,
duration) are excluded, as trained agents ensure waves consis-
tently propagate upstream without premature dissipation.

Wave detection proceeds in three steps: (i) Event detection
— each velocity series ṽi(t) is smoothed over a window Ws

to suppress noise, and regime-change events are extracted as
local extrema within a look-around window Wℓ; (ii) Pairwise
matching — leader–follower events within τmax are linked,
yielding temporal lag ∆t, spatial gap ∆x, and wave speed
c = ∆x/∆t; (iii) Chaining — valid links are combined into
sequences spanning at least Lmin vehicles, with wave speed
summarized by the median c.

TABLE IX: Parameter settings for wave detection

Parameter Wℓ Lmin τmax Ws

Value 1.0 s 5 1.0 s 2.0 s

The algorithm outputs two categories of speeds: decelerating
waves wdec (breakdown) and accelerating waves wacc (recov-
ery). These indicators will later serve to distinguish the traffic
wave speeds generated by different driving styles.

To assess whether wave speeds differ across groups, pair-
wise comparisons are performed using two-sample t-tests,
where each group is tested against a chosen reference baseline.
Normality of the distributions is checked beforehand, since the
data come from different leaders and may not perfectly follow
a normal distribution.

3) Macroscopic Variables
Macroscopic traffic variables—flow, density, and

speed—characterize platoon conditions in a given time–space
region. Following Edie’s definition (Edie, 1965), they can be
consistently retrieved from any arbitrary region.

a) Fundamental Diagram (FD) Construction
To capture platoon dynamics, parallelograms are used as

measurement units (Figure 12a), covering full trajectories
while minimizing void areas.

(a) Parallelogram generation (b) blue: dec., green: acc.

Fig. 12: Parallelogram construction (Left) and wave detection
(Right) (Sample 16).

The congested branch of the fundamental diagram is ap-
proximated by a linear fit

q(k) = a+ bk, w = −b, (5)

where w denotes the backward wave speed. Under a triangular
FD assumption, jam density, critical density, and capacity
follow as

kj =
a

w
, kcrit =

a

vf + w
, qmax = vf kcrit, (6)

with vf given by the 90th percentile of the leading-vehicle
speed (fixed to 50.4 km/h).

b) Statistical Inference of FD Parameters
Weighted Least Square (WLS) estimates all four style

groups in one model, using a clear reference category. The
congested branch of the fundamental diagram is approximated
by a linear function, making least squares estimation suit-
able. Since density–flow data is concentrated near the critical
density and sparse at higher densities, a weighting scheme
emphasizes high-density observations to prevent mid-density
bias.

To assess differences across platoons, a WLS model with
density–platoon interactions is estimated:

qi = β0 +β1(ki − k0)+

S∑
s=2

γsDis +

S∑
s=2

δs(ki − k0)Dis + εi,

(7)
where β1 is the baseline slope and δs represents deviations
for platoon s. And Dis is the dummy variable. T-tests are
performed for pairwise comparisons to the given baseline
group.

For each platoon s, parameters are obtained as

as = (β0−β1k0)+γs−δsk0, bs = β1+δs, ws = −bs,
(8)



and the FD quantities (kj,s, kcrit,s, qmax,s) are derived by
substituting (as, ws, vf,s) into the general formulas above.
Here vf,s is taken as the 90th percentile of the leading-
vehicle speed (50.4 km/h), and bootstrap resampling provides
confidence intervals for style-wise differences.

C. Experiment Setup

To investigate the influence of driving style on traffic
breakdown, a series of platoon simulations were designed.
Building on the classification results (see Table VI), which
identified groups with aggressive, timid, stable, and unstable
characteristics, we directly incorporate these styles into the
experimental setup. Given the large number of possible style
permutations, the study focuses on representative compositions
summarized in Table X.

Each simulation is independent, with the environment reset
after completion.

Notations in Table X are clarified as follows:
• T and P denote trucks (9 m) and passenger cars (5 m)

with the same driving style, randomly assigned in each
run.

• Square brackets [·] indicate ordered lists.
• Curly braces {·} denote unordered sets specifying only

style proportions.
• A subscript gives the platoon size.
• Percentages indicate composition shares.

TABLE X: Experiment set-up summary (each experiment is
carried out with 15 replications and 10 different leaders)

Experiment Composition Category

1-a [P1, P1 · · · ]16 aggressive and stable
1-b [P2, P2 · · · ]16 timid but unstable
1-c [P3, P3 · · · ]16 timid and stable
1-d [P4, P4 · · · ]16 aggressive but unstable

2-a [P1, P2, P1, P2, . . . ]16 mixed stability
2-b [P1, P3, P1, P3 · · · ]16 stable
2-c [P1, P4, P1, P4 · · · ]16 mixed stability
2-d [P2, P3, P2, P3 · · · ]16 mixed stability
2-e [P2, P4, P2, P4 · · · ]16 unstable
2-f [P3, P4, P3, P4 · · · ]16 mixed stability

2-b-1 {P1(25%), P3(75%)}16 stable (P3 biased)
2-b-2 {P1(50%), P3(50%)}16 stable (balanced)
2-b-3 {P1(75%), P3(25%)}16 stable (P1 biased)

3-a [T1, T1 · · · ]16 aggressive and stable
3-b [T2, T2 · · · ]16 timid but unstable
3-c [T3, T3 · · · ]16 timid and stable
3-d [T4, T4 · · · ]16 aggressive but unstable
3-e [P, · · · ]4[T, · · · ]4[P, · · · ]4 clustered trucks at center
3-f [T, T · · · ]8[P, P · · · ]8 clustered trucks as leader
3-g [T, P, T, P · · · ]16 alternating
3-h {T (50%), P (50%)}16 random

Accordingly, three experiments are summarized as follows:
• Experiment 1: Style Homogeneous Platoon Do timid

drivers destabilize traffic more than aggressive ones?
Homogeneous platoons (P1–P4) are tested to isolate
style-specific impacts, allowing systematic comparison of
aggressive vs. timid and stable vs. unstable groups.

• Experiment 2: Alternating vs. Homogeneous Is mixing
styles more efficient? Alternating platoons (e.g., P1–P3)
are compared with homogeneous baselines. The most
promising pair (P1–P3) is further tested under different
proportions (25%, 50%, 75%).

• Experiment 3: Truck Placement How does truck dis-
tribution affect efficiency? Trucks are placed in clustered,
alternating, or random configurations within passenger-
car platoons to evaluate their impact on overall delay.

VII. PLATOON EXPERIMENT RESULTS

A. Experiment 1 - Style Homogeneous Platoon
1) Trajectory level Indicators

TABLE XI: Difference of indicators compared to the reference
level (1-c), * indicates the difference compared to the reference
level (in bold text) significant (p < 0.001)

Experiment |wdec|
(m/s)

|wacc|
(m/s)

ST (S) Delay
(s)

FC
(L/km)

t-test WLS + t-test
1-a +0.55* +0.56* -26* +11* -0.48*
1-b +0.51* +0.22* +77* +45* +0.43*
1-c 5.68 5.29 228 835 0.69
1-d +1.01* +1.05* +38* +41* -0.45*

Delay and standstill time provide complementary views
of breakdown severity. Table XI summarizes the results for
homogeneous platoons.

Aggressive groups (1-a, 1-d) show faster wave propagation
and shorter standstills, indicating that although breakdowns
emerge quickly, they also dissipate rapidly. By contrast, the
conservative–unstable group (1-b) exhibits slower waves but
much longer standstills, leading to heavier congestion.

From centered delay, the conservative–stable platoon (1-
c) performs best, achieving significantly lower delay than all
other groups. This highlights that long standstills do not nec-
essarily worsen overall performance when stability mitigates
breakdown propagation.

Fuel consumption reveals a different picture: conservative
groups (1-b, 1-c) generally consume more fuel due to extended
low-speed gliding. Notably, 1-c has the lowest delay but the
highest fuel use, while 1-d demonstrates that high standstill
time does not necessarily imply high fuel consumption, as
rapid recovery to efficient cruising offsets prolonged stops.

2) Detected Traffic Wave
Traffic waves differ substantially across driving styles, offer-

ing key insights into how breakdowns form and dissipate. Un-
like wave speeds inferred from fundamental diagrams, which
rely on macroscopic calibration, here the waves are directly
detected from trajectories and classified into accelerating and
decelerating types—an essential distinction for breakdown
dynamics.

Figure 13 shows mean accelerating and decelerating wave
speeds with 95% confidence intervals (bootstrapped). Three
findings emerge:

a) Near symmetry: points cluster around the line y = x,
with accelerating waves slightly faster in magnitude.



Fig. 13: Accelerating vs. decelerating wave speeds (95% CI).

Fig. 14: Calibrated Fundamental Diagrams (Congested
Branch)

b) Style effect: Group 1-d (aggressive–unstable) has
the largest wave speeds, while Group 1-c (conserva-
tive–stable) shows the smallest.

c) Fragility: Group 1-b (conservative-unstable)’s confi-
dence interval approaches or crosses y = x, implying
possible inversion (accelerating slower than decelerating),
signaling greater risk of persistent breakdown.

3) Macroscopic Traffic Variables
Macroscopic traffic variables, obtained via fundamental-

diagram calibration, provide an aggregate view of style-
dependent differences (Table XII, Figure 14). Only statistically
significant contrasts are highlighted below.

Four main observations emerge:
a) Wave speed: Steeper slopes in 1-a (aggressive–stable)

and 1-d (aggressive–unstable) indicate faster reactions,

TABLE XII: Fundamental-diagram parameters estimated from
WLS (reference = 1-c). Significance indicates difference from
the reference group( * denotes p < 0.001).

Exp. a b kjam kcrit qmax

(veh/hr) (km/hr) (veh/km) (veh/km) (veh/hr)
WLS + t-test Bootstrap difference testing

1-a 1493.38* -24.34* 61.36* 19.06* 1029.40*
1-b 1294.70 -18.73 69.11 17.80 961.25
1-c 1393.23 -19.52 71.37 18.95 1023.31
1-d 1412.90* -23.62* 59.82* 18.20* 982.94*

while gentler slopes in 1-b (timid–unstable) and 1-c
(timid–stable) reflect slower responses, consistent with
Table XI.

b) Jam density: Defensive 1-c tolerates the highest densi-
ties, whereas unstable 1-d sustains the lowest.

c) Maximum flow: Efficiency–stability trade-offs arise: 1-a
yields the highest flow, 1-b the lowest, 1-c a moderate but
reliable flow, and 1-d’s instability reduces its advantage.

d) Critical density: Stable groups—1-a and 1-c—maintain
significantly higher kcrit, making them less prone to
breakdown near capacity.

B. Experiment 2 - Mixing or Homogeneous Patterns

Experiment 1 revealed that conservative–stable platoons
achieved the best overall performance in terms of delay. In
addition, two patterns were observed: i) conservative drivers,
owing to their lower wave speeds, tend to generate larger
breakdown areas; ii) aggressive drivers produce shorter and
less frequent breakdowns, but their higher intensity often
results in greater delays and higher fuel consumption.

Experiment 2 therefore examines mixed platoons, first test-
ing six alternating style pairs and then varying the proportions
of the most effective pair to assess ratio effects.

1) General Indicators

TABLE XIII: Wave speed, standstill time, and delay for each
platoon composition (* denotes the difference is significant
(p < 0.001) compared to the reference level 2-b)

Exp. |wdec|
(m/s)

|wacc|
(m/s)

Standstill
(s)

Delay
(s)

FC
(L/km)

t-test WLS + t-test
2-a +0.20* +0.28* +44* +23* +0.24*
2-b 5.51 5.61 321.9 492.0 0.98
2-b-1 -0.20* -0.17* +17* -4 +0.45*
2-b-2 -0.09 +0.02 -3 -2 +0.02
2-b-3 +0.06 +0.11 -19* +1 -0.31*
2-c +0.38* +0.49* +6 +20* -0.35*
2-d -0.07 -0.10 +71* +10* +1.19*
2-e +0.31* +0.40* +81* +32* +0.69*
2-f +0.09 +0.19* +40* +16* +0.41*
1-a +0.21* +0.24* -39* +1 -0.55*
1-b +0.17 -0.09 +129* +35* +1.86*
1-c -0.34* -0.32* +29* -10* +0.86*
1-d +0.67* +0.73* +43* +31* -0.03

Table XIII summarizes the results (based on 15× 10 runs).
ANOVA confirms significant effects across indicators, with
pairwise differences identified through HSD tests.



Fig. 15: Wave speed comparison (Margins indicate the 95%
CI.)

The results in Table XIII highlight several key findings.
First, P3 drivers act as a stabilizer: higher proportions consis-
tently reduce delay, though the effect is nonlinear and becomes
most pronounced beyond 75%. Second, P2 drivers operate
as a drag, with P2-dominated platoons (2-d, 2-e) showing
the longest delays and standstills. Third, standstill time and
delay are not directly coupled, as P3-heavy platoons may
experience long standstills yet recover faster overall. Finally,
heterogeneous platoons—particularly P1–P3 mixes—perform
comparably to the best homogeneous groups but do not
substantially outperform them.

Considering fuel use, a trade-off emerges. While P3 stabi-
lizes traffic, its tendency to dwell in low-speed regimes raises
FC, especially once its share exceeds 50%. By contrast, P1
yields the most favorable FC. Mixed P1–P3 platoons thus
strike an effective balance: moderate shares of P3 reduce delay
without significantly increasing fuel consumption.

C. Experiment 3 - Impact of Truck in Platoon

Before examining mixed truck–car patterns, it is useful
to first analyze homogeneous truck platoons as reference
profiles. To this end, three setups are designed, each consisting
exclusively of one driving style with a truck as the leader (see
Table VI).

The style transformer model accommodates vehicle length
as an input, so that agents behave as trucks when assigned a
larger length (9 m in this study, denoted by T), in contrast to
passenger cars (P).

1) Characteristics of Truck Platoon
Figure 15 summarizes the main findings. Homogeneous

truck platoons show a greater gap between decelerating and
accelerating wave speeds than passenger-car platoons, mean-
ing that congestion propagates upstream more rapidly but
dissipates more slowly. Their accelerating wave speeds are
markedly lower, reflecting the slower restart of trucks. By

contrast, decelerating wave speeds are slightly higher: despite
weaker braking performance, truck drivers’ elevated vantage
points and professional training allow earlier anticipation and
reaction, leading to faster upstream propagation.

TABLE XIV: Difference of indicators compared to reference
level (reference group: 3-a, * denotes the difference is signif-
icant (p < 0.01) compared to the reference level)

Experiment wdec

(m/s)
wacc

(m/s)
Standstill

(s)
Delay

(s)
FC

(L/km)
t-test WLS + t-test

3-a 6.12 5.11 21 9 3.22
3-b +0.13* +0.15* -38* +1 -0.84*
3-c +0.14* +0.12 -41* -19* -0.69*
3-d +0.05 -0.05 -7* -16* +0.13*

Meanwhile, other general indicators in Table XIV show two
key points:

1) Consistent with earlier findings, a conservative–stable
style (T3) proves most effective in reducing overall delay
in truck platoons.

2) Fuel consumption is generally higher for trucks than
for passenger cars; notably, T3, despite yielding the
lowest delay, incurs the highest fuel use due to extended
operation in low-speed regimes.

D. Truck Placement: Clustered or Dispersed

TABLE XV: Impact of truck placement (e,f: clustered, g,h:
dispersed)

Exp. Composition wdec wacc ST Delay FC
(km/h) (km/h) (s) (s) (L/km)

t-test WLS + t-test
3-e [P ]4[T ]8[P ]4 6.0 5.4 442 632 4.25
3-f [T ]8[P ]8 +0.2 +0.5* +21* +65* -0.6*
3-g [T, P, · · · ]16 -0.5* +0.4 -35* +9* -1.1*
3-h {T (50%), P}16 -0.4* +0.3 -43* +0 -1.2*

This experiment investigates the impact of truck allocation
within a platoon. The results (Table XV) yield the following
insights:

• Clustered formations: Placing trucks together can re-
duce delay under specific conditions (e.g., 3-e with trucks
in the middle), but the benefit is highly sensitive to
cluster position (compare 3-e vs. 3-f). In real traffic,
where truck positions cannot be controlled, such delay
benefits are unreliable, and 3-e further incurs the highest
fuel consumption due to prolonged low-speed operation.

• Clustering greatly increases standstill time, raising
safety concerns as congestion propagates further up-
stream and lasts longer. In single-lane traffic, clustered
trucks trapped among passenger cars may therefore am-
plify rather than mitigate breakdowns and delays.

• Dispersed formations: Random or dispersed allocations
yield more resilient dynamics. Although delays may not
be as low as in 3-e, shorter standstills indicate milder
breakdowns and faster recovery. Alternating formations
are less robust, making random dispersion the most



practical and reliable strategy under high-demand, single-
lane conditions.

• Macroscopic effects: With a fixed truck proportion, no
significant differences are observed in fundamental dia-
gram parameters (a, b, kcrit), implying that macroscopic
wave dynamics depend on truck share rather than specific
allocation.

VIII. CONCLUSION

This study presented a data-driven framework for modeling
car-following (CF) behavior by embedding driving style as a
latent, time-independent factor. A curated dataset enabled ro-
bust model training, and a Transformer-based style embedding
model jointly learned behavioral traits and CF dynamics. The
embeddings aligned with interpretable metrics (e.g., headway,
reaction time) and modulated CF behavior systematically,
supporting a continuous view of driving style.

Style-aware CF models demonstrated superior accuracy and
robustness in long-term predictions compared to IDM, LSTM,
and standard Transformers, leveraging style embeddings to
reduce overreaction to local fluctuations. This integration of
behavioral interpretability and predictive performance offers a
novel lens on driver heterogeneity in traffic flow.

Furthermore, the style embedding reveals four distinct
groups along two principal axes—aggressive–timid and sta-
ble–unstable—providing a foundational taxonomy for the sub-
sequent platoon experiments.

Building on the CF model, platoon-scale simulations ex-
plored how style heterogeneity shapes traffic breakdowns.
Using both microscopic (delay, wave speed) and macroscopic
(fundamental diagram) metrics, the experiments revealed that:

i) Aggressive drivers generate short, fast waves; conser-
vative ones produce longer, slower waves. Stability reduces
delays but raises fuel use due to extended low-speed driving.

ii) Stability-fuel efficiency trade-offs emerge. Stabilizing
drivers (over 50%) cut delays but increase fuel use. A balanced
mix below this threshold yields optimal outcomes.

iii) Trucks amplify deceleration waves, slowing recovery.
Dispersed truck placements enhance resilience, while cluster-
ing increases fragility, especially under heavy traffic.

This study demonstrates that microscopic driver heterogene-
ity significantly shapes macroscopic traffic dynamics through
three key mechanisms: stability mitigates congestion but in-
creases fuel use; aggressiveness worsens breakdowns despite
localized efficiency; and spatial arrangement—particularly
truck dispersion—affects system resilience. Methodologically,
it offers a reproducible training and testing framework com-
bining a style-aware car-following model. Practically, it rec-
ommends promoting stability-oriented driving and avoiding
truck clustering to enhance flow efficiency and reduce fuel
consumption.
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