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Summary

Traffic congestion has become a pervasive challenge worldwide, imposing severe economic and safety

consequences on modern transportation systems. While infrastructure limitations are often identified

as the direct cause, the diversity of human driving behaviors plays a considerable role in congestion

as well. Differences in drivers’ aggressiveness, anticipation, and reaction patterns shape the collective

dynamics of traffic flow and strongly influence the onset of breakdown. Conventional car-following

(CF) models, which characterize how vehicles follow one another through deterministic equations, cap-

ture speed and spacing dynamics effectively but fall short in representing the heterogeneity intrinsic

to human driving. This limitation restricts conventional CF models from explaining how individual

differences propagate in large-scale congestion phenomena.

To address this gap, this thesis develops a style-aware car-following model that integrates human

behavioral diversity into data-drivenmotion prediction. Themodel is built upon the Transformer archi-

tecture and jointly learnsmotion prediction and driving-style embeddings—latent representations that

characterize the preference of driving. A dedicated CF-oriented Zen-Traffic dataset is constructed and

cleaned through kinematic filtering and car-following validation to ensure the reliability and physical

consistency of the training data. Trained on this dataset, the proposedmodel significantly outperforms

classical CF models, including the Intelligent Driver Model (IDM), as well as deep learning baselines

such as LSTM and a plain Transformer, particularly in long-duration (90 seconds) simulation.

The learned driving-style embeddings are organized into four distinct and interpretable groups

in two principal behavioral dimensions: aggressiveness and stability. The two dimensions align with

established human-factor theories in traffic psychology, thus enabling an interpretable behavioralmap-

ping of driver heterogeneity. Incorporating driving-style embeddings allows the data-driven CF model

to generate diverse driving behavior patterns.

Building on the style-aware CF model, platoon-scale simulations were conducted to explore how

microscopic behavioral heterogeneity affectsmacroscopic traffic performance. The experiments involv-

ing platoons with diverse driving styles and vehicle types reveal a clear stability–efficiency trade-off.

Conservative styles suppress congestion waves but cause higher fuel consumption due to longer low-

speed operations, while aggressive drivers appear fuel-efficient in isolation but induce instability when

interacting with others. Mixing the two styles offers a practical compromise: when the stable aggres-

sive and stable conservative styles are kept at around 50%–50% proportion, the platoon achieves both

reduced delays and controlled fuel consumption. Unstable styles, however, amplify oscillations most

severely compared to the other styles, destabilizing the flow and accelerating breakdown. Furthermore,

the distribution of trucks in a platoon also shapes traffic stability as well: although clustered formations

can occasionally reduce overall delay, dispersed formations generally enhance resilience and recovery,

offering a more robust strategy under dense traffic.
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In conclusion, this thesis establishes an interpretable framework that embeds human driving het-

erogeneity into the CF model. By combining data-driven CF modeling, behavioral embeddings, and

simulation-based analysis, this thesis provides a novel perspective on how individual behavioral diver-

sity influences collective traffic outcomes. The findings highlight that understanding and managing

driving-style heterogeneity is essential to achieving stable, efficient, and sustainable traffic flow.

The main components of this research, including the model architecture, simulation framework,

and algorithmic implementations, are publicly available at https://github.com/liheng423/style-cf.

Use of Generative AI
In accordance with the TU Delft Open Publishing Policies and COPE policies, the author discloses the

use of generative AI tools in the preparation of this thesis. ChatGPT (OpenAI, GPT-5) was used as

an auxiliary tool for language refinement, idea exploration, as well as for code completion assistance.

All generated content was carefully reviewed, edited, and verified by the author to ensure accuracy,

integrity, and originality. The author retains full responsibility for all ideas, analyses, and conclusions

presented in this work.

https://github.com/liheng423/style-cf
https://www.tudelft.nl/library/actuele-themas/open-publishing/about/policies#c684836
https://publicationethics.org/guidance/guideline/short-guide-ethical-editing-new-editors
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1
Introduction

1.1. Background
Traffic breakdown, or traffic congestion, has become a universal issue with far-reaching economic and

safety implications. A key—but often underemphasized—factor in this problem is driving behavior.

Variations in driver tendencies, such as aggressiveness versus caution, differing following distances,

and varied reaction times, play a critical role in exacerbating congestion. For instance, these behavioral

differences can lead to erratic driving patterns, increased likelihood of abrupt braking, and ultimately a

higher risk of collisions. In theNetherlands, economic losses due to travel delays surged by 49% in 2023

compared to 2022 (Rijkswaterstaat, 2024), while congestion has also been linked to increased rear-end

collisions as vehicles are forced to operate in close proximity at variable speeds (SWOV, 2022).

Breakdown typically occurs when the volume of incoming traffic exceeds a road’s capacity. While

infrastructure limitations (such as lane reductions, on-ramps, tunnels, and roadway sags) are often to

blame, poor driving behavior significantly contributes to it. Instead of—or in addition to—expanding

road capacity, suggesting a better way of driving (e.g., maintaining shorter, yet safe, headways) offers

a promising approach to alleviate congestion.

Given the prominent role of driving behavior in congestion, researchers have long turned to car-

following (CF) models to understand the microscopic interactions between vehicles. CF models aim

to capture the response of a following vehicle to the movements of its leader on a single lane. Tradi-

tional models—including the Gazis-Herman-Rothery (GHR)model, safety distancemodels, Hellymod-

els, and action point models (Brackstone and McDonald, 1999)—primarily focus on quantifiable states

such as speed, acceleration, and position. However, these models often struggle to account for the full

spectrum of human driving behaviors, which are far more complex and varied than can be represented

by a handful of parameters (Higgs and Abbas, 2015).

Recent advances in data collection and analysis have spurred the development of data-driven CF

1



1.2. Motivation 2

models. Unlike traditional approaches that rely on rigid mathematical formulations, data-driven mod-

els can learn directly from high-resolution car-following data. This enables them to capture nuanced

driving behaviors—such as individual variations in reaction time, acceleration patterns, and headway

preferences—that are pivotal in understanding and mitigating traffic breakdown (Papathanasopoulou

and Antoniou, 2015). By better representing the complexity of real-world driving, these human-like

models provide deeper insights into how different driving styles contribute to traffic oscillations and

bottlenecks.

1.2. Motivation
Building on these data-driven CF models, it is feasible to develop a style-aware Car-following model,

which can offer more insights into the styles, such as discovering new styles. Furthermore, the model

can be incorporated into a simulation to examine how individual driving behavior shapes breakdown.

By modeling interactions among multiple vehicles under different conditions, researchers can analyze

how collective behaviors influence breakdown patterns, assess the impact of potential interventions,

and refine traffic-management strategies. Such simulations improve our understanding of breakdown

and allow systematic testing of how specific driving styles amplify or dampen traffic oscillations.

In summary, recognizing and modeling diverse driving styles is key to understanding and im-

proving breakdown. Data-driven CF modeling and multi-vehicle simulations enable a more com-

plete view of breakdown mechanisms and support the development of more effective, human-centric

traffic management solutions.

1.3. Research Questions
This study aims to address the following research question:

How do different driving styles shape traffic breakdown in car-following?

To answer the major question, this study proposes the following sub-questions:

1. Driving styles: What is the heterogeneity in driving styles, and how do we distinguish them?

2. Car-following: What are the key characteristics in existing CFmodels, and why are data-driven

CF models necessary?

3. Styles and their Impacts on Traffic: Which driving styles (or vehicle types), and which com-

binations thereof, contribute to traffic breakdown and less energy efficienct under given traffic

conditions?

1.4. Main Contributions
• The study introduces a style-embedding framework that automatically extracts structured rep-

resentations of driving styles from trajectory data. It establishes an interpretable style space—

organized along twohuman-factor dimensions (aggressive–timid and stable–unstable)—providing

a principled and explainable foundation for analyzing and integrating driving style characteristics

into subsequent tasks.

• A car-following model is developed that integrates the style embedding (token) derived from the
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embedder. This style-awaremodel outperforms both classical and state-of-the-art benchmarks in

prediction accuracy. Besides, themodel allows specifying an agent as either a truck or a passenger

car by adjusting its vehicle length parameter.

• To investigate traffic breakdown holistically, the study develops fully automated evaluation indi-

cators that combine microscopic indicators with calibrated macroscopic fundamental diagrams,

thereby enabling large-scale collection and analysis of experimental results.

• The characteristics of different driving styles and their compositions in a platoon are examined

in the context of traffic breakdown. The results demonstrate that stable and conservative drivers

contribute most effectively to improving overall traffic at the cost of higher fuel consumption.

Furthermore, the distinctive role of trucks in traffic flow is investigated.

1.5. Thesis Structure
This study is divided into two parts: (i) style identification and car-followingmodeling (Research Ques-

tions 1 and 2), and (ii) the impacts of driving styles on traffic breakdown (Research Question 3). See

Figure 1.1 for more information.

In the first part, this study establishes a concrete definition of driving style, framing it as a con-

sistent and preferred way of driving. Unlike conventional approaches that characterize heterogeneity

qualitatively, this work provides a quantitative formulation. Trajectories are clustered based on their

embeddings, which are learned representations trained specifically to encode driving style. To improve

interpretability, each cluster is interpreted according to relevant human factors in car-following, as

identified in prior studies.

Through this formulation, the study effectively reveals the heterogeneity in driving styles and dis-

tinguishes them within the learned embedding space. At the same time, the resulting clusters are en-

dowed with plausible and interpretable meanings grounded in empirical driving behavior research.

Regarding car-following modeling, this study conducts a comparative analysis of classical and

state-of-the-art CFmodels against the proposed style-based Transformermodel. The performance lim-

itations of the benchmark models are attributed to their architectural constraints and design choices,

highlighting their shortcomings in capturing human-like behavior. These findings underscore the ne-

cessity of data-driven approaches—particularly the proposed style-aware CF model—for modeling re-

alistic and individualized car-following behavior.

In the second part, building on the style-aware car-followingmodel and the driving styles extracted

from the dataset, the study investigates the connections between driving styles and traffic breakdowns.

The analysis relies on a series of platoon simulations that incorporate different vehicle types (truck and

passenger car) and driving styles (stable/unstable and aggressive/timid). These experiments aim to

provide a general profile of how different styles contribute to traffic congestion. In addition, specific

platoon compositions—such as alternating-style platoons—are examined to highlight recommended

formations that can enhance overall traffic efficiency.
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Figure 1.1: Overview of the Thesis Structure



2
Literature Review

To conduct a comprehensive literature review and address the primary research question, the following

keywords are utilized in Scopus and Google Scholar to cover all relevant aspects of the study (Table 2.1)

Given the growing prominence of data-driven models in recent years, the search results are occa-

sionally sorted by publication date to ensure that no relevant data-driven CF studies are overlooked.

This literature review addresses three subtopics relevant to the study. It first defines the concept of

driving style and examines existing research on its clustering and characterization. It then explores the

relationship between driving style and traffic breakdown in the current research, highlighting how indi-

vidual behavioral variations may contribute to flow instability. Finally, it discusses key considerations

for incorporating driving style into car-following models and reviews the state-of-the-art approaches

in this domain.

2.1. Heterogeneous Driving Styles
Congestion can arise from the interaction of heterogeneous driving styles, making it essential to define

and analyze driving style as a key factor in traffic dynamics.

Review Keywords

Congestion Congestion Dissipation Car-following, Traffic Congestion, Stop-and-

go waves, Traffic Oscillation

Driving Style Driving style analysis, Driving behavior classification

Historical CF Development Car-Following Model, Car-following Congestion

Data-driven CF Data-Driven Car-Following, Deep Learning Car-Following

Table 2.1: Keywords used in literature review

5
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To clarify, according to the definition by Sagberg et al. (2015), driving style refers to a consistent set

of behavioral preferences inherent to the driver and independent of the driving context, whereas driv-

ing behavior is context-dependent and shaped by driving context, such as traffic density. Accordingly,

driving style captures stable traits—such as preferred following distance and reaction time—that sys-

tematically influence car-following behavior and are typically embedded in microscopic traffic models

such as the IDM and Newell’s model.

2.1.1. Human-factor in Driving
Human factors are a key topic in this thesis, explaining why drivers behave differently under various

conditions. Since the car-followingmodel is a psycho-physicalmodel involving complex human factors,

it is important to clearly specify which factors have been recognized in previous research. These factors

help to interpret the clustering of driving styles.

In Saifuzzaman and Zheng (2014), several human factors are mentioned. Some of these can be

quantitatively observed in the trajectory data, and will be used to qualitatively describe a specific type

of driver, while others cannot. Table 2.2 lists the details of these factors.

Table 2.2: Human factors in driving style, categorized by observability from trajectory data

Factor Description

Observable from trajectory data

Reaction time Can be derived using DTW by pairing two speed sequences

Temporal anticipation Drivers can predict traffic situations for the next few seconds

Aggressiveness Measured by time headway and reaction time

Driving skills Assessed by the standard deviation of headway (σh) and reaction

time (στ )

Distraction Partially reflected by variations in σh and στ

Not directly observable from trajectory data

Socio-economic characteristics e.g., age, gender, income, education

Estimation errors Spacing and speed are perceived with limited accuracy

Perception threshold Humans cannot detect minor changes in stimuli

Spatial anticipation Drivers considermultiple vehicles ahead, not directlymeasurable

Context sensitivity Driving style may vary depending on traffic context

Imperfect driving Same driver may behave inconsistently under similar conditions

2.1.2. Clustering Driving Style
Driving behavior is considered the outcome of an intricate psychological process (Ranney, 1999). Each

cluster’s attributes and peculiarities can be described phenomenologically using a set of criteria (e.g.,

average headway, acceleration, etc.). This clustering forms the foundation for analyzing drivers prone

to causing congestion, which is of our interest.

The heterogeneity in driving behaviors significantly influences model performance. Ossen and

Hoogendoorn (2011) demonstrates that this heterogeneity impacts the effectiveness of conventional

microscopic models, highlighting their limitations. This necessitates a shift toward more generic mod-
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els.

Efforts to identify clusters of potential driving styles continue, with no definitive conclusions yet

reached. Building on the GHRmodel, Higgs and Abbas (2015) suggests the existence of approximately

30 distinct clusters of car drivers, each characterized by unique parameter settings. Moreover, this re-

search highlights that truck driving behaviors are generallymore homogeneous than those of passenger

cars. Additionally, Chen and Chen (2019) identified three significant clusters based on the features of

speed maintenance, lateral acceleration, braking, and longitudinal acceleration maneuvers. Attempts

have been made to explain these clusters by driver attributes such as gender and age, yet the associa-

tions remain tentative.

Therefore, the clustering of driving styles remains at a very preliminary stage, with neither an

established number of clusters nor a clear understanding of the mechanisms behind such clustering.

2.2. Driving Style in Traffic Breakdown
As stated, congestion arises when road capacity is insufficient to accommodate the traffic volume, often

due to factors such as incidents or accidents that reduce capacity. In traffic flow theory, congestion is

defined as a condition where the density of vehicles on a given road segment exceeds the critical density.

Traffic oscillations are a common cause of congestion and are frequently observed on roadways.

The oscillation is termed as stop-and-go waves as well. Drivers typically experience the alternating

stop-and-go phases while driving through congested areas but often remain unaware of the underlying

causes (e.g. bottleneck, accident) of the congestion. When such waves propagate upstreamwithout dis-

sipating, they can escalate and intensify the congestion, pushing the local traffic state into the congested

regime (Suh and Yeo, 2016).

The onset of the oscillation is ascribed to be longitudinal (e.g. instability in driving behaviors) and

lateral (e.g. lane-changing maneuver) induced by spontaneous driving behaviors or external factors

(e.g. bottleneck), the growth or dissipation of the waves are statistically verified to be independent of

the trigger of such waves (Zheng et al., 2011).

As perturbations could occur in the normal traffic flow regardless of being spontaneous or external,

the developing stage is more of interest in research. Instead of originally conjectured to be asymmetric

acceleration and deceleration when leaving and entering the oscillation, the growth/dissipation of the

oscillation is deemed to be driving patterns (behaviors) inmore later studies (Laval and Leclercq, 2010).

Simultaneously, Laval and Leclercq (2010) suggests that the actions of drivers, such as those who are

aggressive or timid, contribute to the intensification of oscillations. Hence, it is crucial for us to explore

which specific driving patterns worsen the stop-and-go waves, beyond merely focusing on aggressive

and timid drivers.

In prior research (Laval and Leclercq, 2010; Zheng et al., 2011; Suh and Yeo, 2016), the classifica-

tion of driving behaviors remains at a relatively basic level, focusing on factors such as reaction time,

minimum spacing, and acceleration. While this simplicity aids in analysis, itmay overlook broader clus-

ters of driving patterns beyond merely aggressive and timid behaviors that exacerbate the oscillation

into congestion.
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2.3. Development of Conventional Car-following (CF)
To explore the impact of driving style, we need a tool to extract relevant behavioral features from trajec-

tory data. Car-following (CF) models serve this role by translating raw trajectories into interpretable

variables like acceleration, headway, and reaction time. These outputs allow us to analyze driving style

and its influence on traffic breakdown. Therefore, CFmodel is essential for the experiments that follow.

Early car-following (CF)modelswere designed to describe longitudinal vehicle interactions through

deterministic rules, often assuming homogeneous driver behavior. The GHR model (Chandler et al.,

1958) represents a foundational attempt, where acceleration is a function of spacing, relative speed,

and own speed. Despite its historical importance, its lack of robustness and contradictory parameter

estimations limited its long-term relevance (Brackstone and McDonald, 1999).

Later developments introduced behavioral considerations. Collision avoidance models such as

Gipps and IDM (Gipps, 1981; Treiber et al., 2000) separated driving into distinct regimes (e.g., free-

flow and interaction), relying on intuitive parameters like reaction time and deceleration. While more

realistic, they remain highly sensitive to calibration and often assume uniform behavioral patterns.

Othermodels, such asHelly’s linearmodel, incorporate driver perception thresholds, aligningwith

the notion of action points (Brackstone and McDonald, 1999). Newell’s model (Newell, 2002), though

parsimonious and analytically efficient, simplifies car-following behavior as a fixed delay in trajectory

replication—again overlooking inter-driver variability.

Across these formulations, a common limitation remains: the inability to account for driver het-

erogeneity and complex cognitive processes. Several empirically observed behavioral phenomena are

often omitted to preserve mathematical simplicity:

1. Memory effect is initially proposed assuming the driver reacts to the speed of its leader in a pe-

riod of time, rather than merely in a time instant (Lee, 1966). The model successfully smoothens

the acceleration profile. However, due to the complexity of solving an integral, the memory effect

stayed unnoticed till the advent of data-driven models. The concept of memory can be extended

to the actions (speed, acceleration) by the follower previously, not merely the speed of the leader.

2. Reaction time is the time lag between the maneuver from the leader and the reaction made

by the follower. Firstly specified in Chandler et al. (1958), the reaction time becomes a well-

acknowledged effect existing in CF.

3. Psychological mechanism contends that driving is fundamentally a cognitive and perceptual

process, characterized by inherent uncertainties since drivers are not fully aware of the precise

distance or speed of the vehicle in front of them. Or the other way around, the drivers don’t react

till the limit is reached (i.e., distinguishable enough by a human driver). Therefore, the fuzzy-

logic framework and Leutzbach and Wiedemann (1986) are consequently formulated. However,

the models are criticized for their mathematically unsound and complicated (Brackstone andMc-

Donald, 1999).

4. Heterogeneity indrivingbehaviors is undeniably awidely recognizedphenomenon. Nonethe-

less, psychological factors play a significant role behind the scenes, resulting in CF models apply-

ing a different set of parameters to account for this variability. A related topic is driving behavior
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clustering, which will be discussed in further detail later.

5. Asymmetric effect is believed to be one possible culprit in exacerbating traffic oscillation at

the developing stage. This asymmetric response can intensify traffic oscillations, making it a key

phenomenon to capture in CF modeling. The effect implies the drivers don’t behave the same

when accelerating and decelerating.

These limitations motivate the need for more flexible, data-driven approaches that can implicitly

capture complex behavioral traits without predefined functional forms.

2.4. Data-Driven CF Model
Conventional car-following (CF) models have become increasingly intricate to better capture observed

traffic phenomena. For instance, theGHRmodel assumes continuous interactionwith the leader, while

models such as Gipps and IDM incorporate distinct regimes, including free-flow and interaction phases.

However, introducing additional regimes complicates the analytical framework and poses challenges in

integratingmeasurement data. These limitations have spurred a transition toward data-drivenmodels,

which provide greater flexibility and reduce sensitivity to predefined regimes (Papathanasopoulou and

Antoniou, 2015). Moreover, psychological studies on driving behavior suggest that drivers’ behavior

may evolve over time depending on the prevailing traffic conditions (Ranney, 1999). These develop-

ments highlight the looming bottlenecks in conventional CF models and pave the way for exploring

alternative solutions.

Early data-drivenCFmodels based on shallowarchitectures likeMLPs andElmannetworks showed

improved accuracy over classical models (Simonelli et al., 2009; Colombaroni and Fusco, 2014), but

struggled to incorporate temporal dependencies. Some also attempted to model driver psychology via

fuzzy rules (Chong et al., 2013), yet lacked the capacity to fully capture the memory effect and complex

behavioral dynamics.

Initial experiments primarily leverage the capabilities of time-series data, yet they are constrained

by basic and shallowneural network designs likeMLPs, which inherently lackmemorymechanisms and

aren’t specifically optimized for handling time-series information. In the deep-learning era, though,

temporal features can be seamlessly integrated with specialized neural network architectures, enhanc-

ing data-driven results significantly.

Recurrent Neural Networks (RNNs) and Long-Short TermMemory (LSTM)models are widely rec-

ognized within the time-series deep-learning domain. Zhou et al. (2017) introduces an RNNmodel for

forecastingCF, asserting thatRNNs can intrinsically capture theheterogeneity indrivingbehavior

(Phenomena 4), unlike IDM’s parameters which reflect a generalized scenario and struggle to predict

specific driving patterns such as aggressive driving. Huang et al. (2018) places emphasis on utilizing

the LSTM’s ability to capture asymmetric effects (Phenomena 5). Wang et al. (2019) developed a

similar time-series GRU network to study its performance in reproducing the action point (Phenom-

ena 3). On the other hand, Ma and Qu (2020) employed a sequence to sequence model to break the

output length limit, which is required to be less or equal to the input size, in LSTM and similar time-

series model. On top of that, the reaction time (Phenomena 2) is externally calibrated and plugged

into the model.
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Some studies also explore hybrid approaches, where models like IDM are incorporated into deep

networks as regularizers (Mo et al., 2021; Geng et al., 2023). While these improve generalization and

robustness, their reliance on predefined physical rules limits the ability to fully capture diverse and

complex driving behaviors.

Table 2.3: Existing studies summary in deep learning CF framework (subscript denotes the length of the time series).

Reference Model Inputs Outputs Loss Memory

(s)

Zhou et al.

(2017)

RNN [∆xt,∆vt, vFt ]t−10:t aFt+1 MSE(aFt ) 1

Morton

et al. (2017)

LSTM + Gaus-

sian Mixture

[∆x,∆v, vF , aF ]t−100:t Distribution(aFt+1) MSE(vFt ) 10

Huang

et al. (2018)

LSTM [∆x,∆v, vF ]t−100:t [∆xt+1, vFt+1] MSE(xF
t ) +

MSE(vFt )

10

Wang et al.

(2019)

GRU [∆x,∆v, vF ]t−10:t aFt+1 or v
F
t+1 MSE(xF

t ) 10

Ma and Qu

(2020)

Seq2Seq

(LSTM)

[∆x,∆v, vF ]t−50:t aFt+1:t+h MSE(xF
t ) 5

Mo et al.

(2021)

LSTM + IDM [∆x,∆v, vF ] aFt+1 MSE(aFt ) 1

Geng et al.

(2023)

Transformer +

IDM

[∆x,∆v, vF , xF ]1:t,

[xL, vL]t:t+h

xF
t+1:t+h MSE(xF

t ) 5

Overall, deep learningmodels have demonstratednotable improvements in predictive performance

and behavioral fidelity by incorporating temporal dynamics and driver heterogeneity. They also show

promise in capturing rich driving information by incorporating possible phenomena in CF, which are

related to human factors, though doing so requires careful architectural design and task formulation in

training.

2.5. Research Gap
1. While driving styles and behaviors have been acknowledged as significant, there is a lack of studies

that incorporate clustering during the training phase in data-driven models. In current practice,

clustering occurs independently of the training phase, using standard clustering methods, fol-

lowed by the development of severalmodels tailored to different driving patterns (Zhu et al., 2018;

Zhou et al., 2017). Additionally, the clustering remains rather basic, often characterized simply as

timid or aggressive (Laval and Leclercq, 2010; Zhang et al., 2022). Adopting a data-driven model

allows deeper insight into the clusters produced in an unsupervised manner through post-hoc

analysis of the identified driving style groups.

2. Existing data-driven CF models rarely incorporate components explicitly dedicated to represent-

ing driving styles or ensuring that style-related features are meaningfully reflected in the model

outputs (Zhou et al., 2017; Zhu et al., 2018; Ma and Qu, 2020). Furthermore, few studies discuss

how input design can facilitate the learning of driving styles, leaving the relationship between

model inputs and style representation largely unexplored.

3. The relationship between driving style and traffic breakdown remains elusive in existing research.

Although some preliminary progress has beenmade through analytical experiments based on the
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Newell CF model, these studies often neglect many influencing factors to preserve model parsi-

mony (Zheng et al., 2011; Laval and Leclercq, 2010; Chen et al., 2014). Therefore, this study aims

to investigate this relationship using a fully data-driven modeling and simulation approach. This

involves designing breakdown experiments to examine how heterogeneous driving styles influ-

ence traffic flow stability and the onset of breakdown.



Part I

Style-aware Car-following Model



3
Methodology

3.1. Style Embedder
Although the existence of driving behavior is well acknowledged in the literature, there is no consensus

on how to quantitatively define driving style, which is shaped by complex psychological and behavioral

processes (Ranney, 1999). Following Sagberg et al. (2015), this study defines driving style as a habit-

ual way of driving—a recurrent pattern of behavior across driving occasions that encompasses both

automatized and consciously controlled actions. In contrast, driving behavior is understood as context-

dependent reactions.

Givendata limitations—specifically, the short trajectory lengths per driver—weassume that driving

behavior may vary with traffic context, whereas driving style remains stable over time. To assess this

assumption, we leverage a data-driven embeddingmodel to examine whether long-term style traits can

be inferred from observed trajectories.

However, traditional models such as the IDM often assume that drivers behave optimally, which

fails to capture real-world variability. Moreover, they rely on predefined, context-insensitive parame-

ters (e.g., average time headway). In contrast, our approach learns latent driving style representations

directly from raw trajectory data, aiming to provide empirical evidence on whether driving style consti-

tutes a stable driver-level trait or a context-dependent phenomenon.

3.1.1. Driving Style Features
Previous studies have revealed links between human factors and driving styles (Table 2.2). In this study,

these factors are incorporated as input features for the data-driven style embedder model.

Meanwhile, previous studies have linked certain quantities to driving styles, which are widely used

in classical car-following models. Instead of letting the data-driven model discover these patterns im-

plicitly, we incorporate domain knowledge into feature selection to enhance interpretability. The se-

13



3.1. Style Embedder 14

lected features serve both as behavioral indicators and as a basis for understanding the learned style

embeddings.

Human factors play a significant role in car-following behavior. While some of these factors cannot

be directly examined due to the limitations of trajectory-only data, others—such as reaction time—are

implicitly embedded in the observations. Quantifying these latent factors is essential for advancing

this research. Although using hand-crafted features introduces potential issues, such as definitional

ambiguity and sensitivity to noise, it remains necessary to define several style-related metrics. These

features allow for the integration of domain knowledge into the model and support the interpretation

of both the learned embeddings and the resulting style clusters.

Note that both reaction time τ and time headway h are extracted as time series and directly used

as input features for the style embedder (see Table 3.3 for the style embedder’s complete input series).

Reaction time
Reaction time τ is defined as the temporal gap between a leader’s action and the corresponding response

of the follower. In the literature, Sharma et al. (2018) propose a dynamic time warping (DTW) based

estimation. However, this methodmay fail in cruising regimes—when both vehicles travel at nearly the

same speed—since the leader–follower trajectories become indistinguishable (see Appendix Dynamic

Time Warping for details).

To address this limitation, we introduce a dynamic upper bound on the DTW-estimated reaction

time. The upper bound is determined by the inter-vehicle spacing in combination with an assumed

traffic-wave speed (setting w = −15 km/h), using the ground-truth w = ∆x/τ . This ensures that

the estimated delay does not exceed a physically plausible value. This modification prevents the DTW

method from producing unrealistic results in near-cruising scenarios, while preserving its ability to

capture reaction dynamics in other contexts.

Time headway
Time headway h, as defined in Equation 4.3, can be used to describe driver aggressiveness, driving

skills, and other human factors in car-following behavior. For instance, the Intelligent Vehicle Model

(IDM) includes the desired time headway as a key parameter. Therefore, in this study, time headway

is selected as one of the style-related features.

3.1.2. Driving Style Embedding Model
According to Table 2.2, some factors—such as socio-economic characteristics, estimation errors, spatial

anticipation, and context sensitivity—are not available in the dataset. Therefore, including these factors

in the analysis is not feasible in this study; however, this does not imply that they do not contribute to

the diversity of driving styles. Other factors are implicitly represented in the dataset, but there is still no

consensus on how to quantify them. This study aims to develop methods to quantify these factors and

analyze their contribution to the clustering of driving styles, regardless of whether they are directly used

as input data. These factors are expected to provide a meaningful interpretation of the classification

based on embeddings produced by a deep learning model.

Driving style is often conceptualized as a time-independent characteristic. Consistent with this

view, the present study also treats driving style as a time-independent latent factor. Since driving style
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is not directly observable, it typically requires calibration when used as input for downstream models.

In contrast, this study proposes a data-driven embedding model that automatically infers driving style

from vehicle trajectory data.

Rather than performing direct temporal aggregation—which risks discarding temporally sensitive

features such as reaction delays—this study leverages a neural attention mechanism to preserve and

exploit the temporal dependencies. Specifically, an attention layer (see Figure A.5) is trained to capture

correlations between different timesteps within a trajectory sequence.

The encoder component of the Transformer architecture (Figure A.4), namely the left-hand block,

serves as the core of the driving style embeddingmodel. While the encoder outputs a sequence of hidden

representations across time, a single style representation (i.e., the driving style token or embedding) is

ultimately obtained by aggregating the encoder’s output over the temporal dimension. This aggregated

token serves as a compact, time-independent representation of the driver’s behavior. The complete

process is illustrated in (Figure 3.1).

The model takes as input a sequence with shape (Time,Feature), setting Tstyle = Thist (see Fig-

ure 3.1), and produces a fixed-length vector representation, where the output dimensionality is user-

defined. Notably, the resulting embedding is time-independent, meaning it does not retain any explicit

temporal information. Moreover, themodel is capable of processing sequences of arbitrary length along

the time axis, providing flexibility in handling vehicle trajectories of varying durations.

The details of the architecture are illustrated in Table A.1.

3.2. Style-aware CF Model
Based on the plain Transformer model described in Section Transformer Model, the Style-aware CF

model extends this architecture by incorporating a style embedding. This embedding serves as addi-

tional information to regulate the model’s behavior. Ideally, the model should be able to recognize the

input and utilize this information effectively.

Rather than merely relying on the Transformer model for prediction, driving style can also be ex-

tracted from time series data. However, the style embedding is represented in a time-independent

format, meaning it lacks temporal information. Integrating the processed decoder series, the encoder

output, and the style embedding presents a significant challenge. To address this, the following section

explains the proposed approach in detail.

3.2.1. Integrating Style to CF model
The architecture of the style-aware CFmodel is illustrated in Figure 3.1, and architecture specifications

are provided in Appendix Style-CF Model Architecture.

The model consists of two major parts: i) a style embedder, an independent Transformer encoder,

which produces a time-independent style token. The CF Transformer integrates the style token from

the embedder and produces the acceleration prediction.

Worth noticing, the model takes three inputs: encoder and decoder sequences, representing the

standard car-following transformer structure, and a style series, which serves as complementary input.
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Figure 3.1: Integrating the style embedding (token) into the Transformer CF model (The details of the architecture can be

referred to section A.4)

Figure 3.2: Definitions of inputs and outputs of the Transformer model (also of Transformer part in Style-aware CF model)

The style series is originally a time sequence but is transformed into a time-independent embedding

(token) through the style embedder before being prepended into the model. This design allows the

style embedder part to participate in training. As a result, the model produces two outputs: i) a style

embedding, useful for clustering, driving style analysis, other downstream tasks, and optionally for loss

function computation; ii) the predicted acceleration in the prediction window, used in car-following

prediction and loss function.

This design allows the attention mechanism to dynamically decide whether and how to utilize the

style information, and such a utilization can be later revealed in the attention matrix.

3.2.2. Inputs and Outputs Definitions
Since the Transformer architecture requiresmultiple inputs, which could be confusing at the beginning,

the details of the definition and the segmentation of a single training sample are further illustrated.

Similar to the standard Transformer input, the structures of the encoding and decoding series in

Style-aware CF model follow the plain Transformer architecture. In this study, specifically, we define
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the input series in the following notations.

Figure 3.2 shows the structure of one training sample. The dashed line separates the historical

window Thist from the prediction window Tpred. The label window Tlabel includes the leader’s behavior

that the follower reacts to. Specifically, the part of the label window on the left (i.e., inside the his-

tory window) is further defined as the History Label window, and the part on the right (i.e., inside the

prediction window) is defined as the Future Label window.

Importantly, although the label window spans both past and future relative to the decoder, the

masking mechanism restricts visibility to only the earlier time steps within the prediction horizon (Ap-

pendix Causality andMasking). In effect, the visibilitymatrix becomes lower-triangular paddingwith 0

(visible), allowing access to past information while blocking all future positions. This scheme is applied

to features related to the leader, i.e. vL in this study.

To prevent data leakage, features related to the follower vehicle—such as its velocity—are not used

in the decoder input during the prediction window. These features are masked using average values

from the historical segment to avoid introducing future knowledge. This scheme is applied to features

related to the follower, i.e. vF in this study.

The key difference between the plain Transformer CF model and the Style-aware CF model lies in

the additional style series input (Figure 3.1), which is constructed using style-relevant features identi-

fied in Table 3.1. Specifically, the selected features—(τt, ht,∆xt, v
F
t )—capture both driving style (τt, ht)

and regime (∆xt, v
F
t ). During training, v

F
t in the prediction window is masked out to prevent data

leakage. The organized details of inputs, outputs, and model structure can be found in Table 3.3.

3.3. Model Training
3.3.1. Setup
The Style-aware CF model was trained on a workstation equipped with an Intel i7-12700K CPU, an

NVIDIARTX 3070Ti GPU (8GBVRAM), and 32GBRAM, using PyTorch 2.1 with CUDA 12.1. Training

was conducted for 30 epochs with a batch size of 64. The Adam optimizer was employed with an initial

learning rate of 10−4 and a weight decay of 10−5. kinematic position loss (see Equation 3.1) was used

as the training objective, and a step-based learning rate scheduler reduced the learning rate by a factor

of 0.1 every 10 epochs. See Table 3.3 for hyper-parameter details.

On this setup, the full training required approximately 26 minutes. Model checkpoints were saved

according to the lowest validation loss, and all experiments were run with a fixed random seed, 42 in

this training, to ensure reproducibility. The training process demonstrated stable convergence, with

validation loss plateauing after roughly 20 epochs.

All code and scripts used for model training, evaluation, and simulation are publicly available at

https://github.com/liheng423/style-cf, ensuring full reproducibility of the results.

3.3.2. Loss function
Since the model predicts acceleration while the quantities of interest are the follower’s velocity and, at

times, its position, the kinematic relations must be incorporated into the loss function. This ensures

https://github.com/liheng423/style-cf
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that both speed and position can be consistently recovered from the predicted accelerations. With

ground-truth position and speed available, defining a suitable loss function becomes straightforward.

In this study, we focus on the accuracy of the follower’s position, which requires two levels of integration

from acceleration. As a result, achieving accurate and stable position prediction also depends on the

quality of predicted speed and acceleration, especially under longer prediction horizons.

The corresponding loss function is given in Equation 3.1 and the formulation follows Equation A.2:

v̂Ft = vF0 +∆t

Tpred∑
i=1

âFi

x̂Ft = xF
0 +∆t

Tpred∑
i=1

v̂Fi

Loss =
1

Tpred

Tpred∑
i=1

(
x̂F
i − xF

i

)2
(3.1)

Here, x̂F
t , v̂

F
t , and âFt denote the model predictions of position, speed, and acceleration, respec-

tively, while xF
t , v

F
t , and aFt represent the corresponding ground-truth values recorded in the dataset.

Note that the model requires initialization values—xF
0 , v

F
0 , and aF0 —which correspond to the follower’s

state at the timestep immediately preceding the prediction window.

Namely, the loss function corresponds to the mean squared error (MSE) of the follower’s position

over the prediction window. With this training approach, physical consistency is preserved throughout

the process. As a result, the predicted acceleration remains realistic, free fromextreme outliers or jitters

artifacts, and aligns more closely with real-world driver behavior.

3.4. Testing: Model Evaluation Framework
To properly evaluate a style-aware car-following (CF) model, the following requirements must be satis-

fied:

1. Recursive prediction: The model performance should be evaluated over a long prediction

horizon, relying solely on its own past predictions rather than real-world data inputs. This allows

us to observe how the model behaves autonomously without external data guidance.

2. Independent style evaluation: The performance of the style embedder should be assessed

separately to verify whether it effectively captures and represents the intended driving styles.

3. Style-informed testing: During CF model testing, style information must be explicitly pro-

vided to the model, enabling an examination of whether incorporating style awareness leads to

measurable performance improvements.

This naturally leads to the following sections. First, we introduce the concept of recursive predic-

tion. Next, we present themethodology for evaluating the style embedder. Finally, we describe in detail

the design of the testing experiments.
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Figure 3.3: Recursive Prediction over time

3.4.1. Car-following Simulation: Recursive Prediction
The Style Transformer model and the corresponding benchmark models (see Section Benchmark mod-

els) are short-duration prediction models, meaning they are trained with a prediction horizon of only

a few seconds (e.g., style-aware CF predicts 4 seconds in the future). This choice is primarily driven by

considerations of computational cost. However, strong performance over a short prediction horizon

does not necessarily translate to reliable performance over longer durations, as prediction errors can

accumulate over time. Long-duration prediction poses a greater challenge for models trained on short-

duration datasets and thus serves as an ideal criterion to evaluate their generalization capability. More

importantly, this study aims to investigate the influence of driving styles on congestion formation. The

long-duration evaluation is, thus, preferred.

Recursive Prediction
As a single-agent system, recursive prediction is essential for achieving long-duration forecasting. How-

ever, since the trained models are primarily optimized for short-duration prediction, a recursive pre-

diction algorithm is developed to decompose the long-duration prediction task into a sequence of short-

duration steps.

The overall process is illustrated in Figure 3.3. The long-duration trajectory is predicted recur-

sively, with each iteration advancing the time window by Tpred seconds. The algorithm terminates auto-

matically upon reaching the end of the sequence. A key requirement of this recursive framework is the

initialization step, where the initial historical segment (the yellow block T 1
hist) is filled with ground-truth

data, as the model requires a history window to begin prediction.

It is important to note that after the first prediction step, the subsequent input windows (the green

blocks) start to contain themodel’s own predictions instead of ground-truth values, as they overlapwith

previous outputs. Although the model initially relies on ground-truth input, the prediction horizon is

sufficiently long—90 seconds per clip—so the influence of ground-truth data is negligible in the overall

sequence in the long term.

Simulation Algorithm
Based on the idea of recursive prediction, this report proposes a car-following simulation algorithm that

generates the follower vehicle’s trajectory given the leader’s movements. The details are presented in

Algorithm 1, where the simulation produces the complete trajectory of the follower within the specified

time range.
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Algorithm 1 Recursive Prediction with Sliding History

1: Inputs:

groundtruth data dL[1:T ], d
F
[1:T ], including position, velocity and acceleration

modelM

2: Params: Thist (history length), Tpred (prediction horizon), T (length of time series)

3: Output: Predicted self movements ŷ[1:T ] (including position, velocity and acceleration)

4: Initialize a default training movement series xF
[1:T ]← empty series O[1:T ]

5: Initialize first history window xF
[1:Thist]

← dF[1:Thist]
6: Initialize the start timestep t0 ← Thist

7: for k = 1 to
⌊
(T − t0)/Tpred

⌋
do

8: t← t0 + (k − 1)Tpred

9: Prepare inputD ← (dL[t−Thist:t+Tpred]
, xF

[t−Thist]
)

10: Predict ŷ[ t: t+Tpred] ←M(D)

11: Append ŷ[ t: t+Tpred ] to ŷ

12: Update history window: xF
[t:t+Tpred]

← ŷ[t:t+Tpred]

13: end for

14: return ŷ

3.4.2. Testing: Style Embedder
Driving style embedding, or style token (Figure 3.1), is time-independent and captures the driving style

after training. Due to its time independence, the style embeddings can be directly clustered in the

embedding space.

Although the exact representation of the embeddings is unknown, clustering algorithms can still

be applied to differentiate driving segments. In this thesis, the K-means algorithm is employed.

To avoid data leakage, the dataset used for the following analysis is the long-duration dataset (Fig-

ure 1.1), which is fully independent from the training and validation data.

Styles Clustering and Visualization
K-means is a widely used unsupervised clustering algorithm that partitions a set of n data points intoK

non-overlapping clusters. It minimizes within-cluster variance by iteratively updating cluster assign-

ments and centroids. Specifically, each data point is assigned to its nearest cluster center, which is

subsequently updated as the mean of the points within the cluster. This process repeats until conver-

gence, typically when cluster assignments stabilize or the objective function no longer changes.

K-means clustering is conducted on the predefined embedding space of driving-style segments.

The clustering operates directly on the learned embeddings. The number of clusters is selected based on

the elbowmethod, and the quality of the resulting partition is assessed using the Silhouette Score, which

measures both intra-cluster cohesion and inter-cluster separation, and further reveals the distribution

of driving styles.

To visualize the clustering structure, the high-dimensional embedding representations are pro-

jected onto a 2D space using Principal Component Analysis (PCA). While the resulting plot provides an

intuitive overview of cluster distribution, it may not fully reflect separability due to possible non-linear
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Symbol Quantity Related human factors

h̄ Average time headway Reflects aggressiveness and possibly driving profi-

ciency

τ̄ Average reaction time Associated with aggressiveness, driving proficiency,

and temporal anticipation

στ Standard deviation of re-

action time

Related to driving proficiency and distraction, as

variability may indicate inconsistent behavior over

time

σh Standard deviation of

time headway

Also associated with driving proficiency and distrac-

tion, similar to στ

lF Length of follower vehicle Truck drivers exhibit different behavior compared

to passenger car drivers (Ossen and Hoogendoorn,

2011)

lL Length of leader vehicle Driver behavior may differ when following a truck

rather than a passenger car

Table 3.1: Driving style-related car-following quantities

structures in the original space. The visualization thus serves as a qualitative reference for assessing

the clustering results. Note, PCA is only used for visualization, and has no impact on any downstream

tasks.

Style Interpretation and Validation
After visualizing the clustering results, it is essential to interpret the characteristics of each group. Ac-

cordingly, Table 3.1 presents the style-related indicators. These features are designed based on the

human factors in car-following (CF), as listed in Table 2.2, because they are informative for uncovering

the underlying driving styles reflected in the trajectories. These indicators thus serve as the foundation

for interpreting the behavioral characteristics of each cluster.

Furthermore, after identifying their characteristics, we need to validate that the differences be-

tween groups indeed exist in terms of driving style, rather than merely in the embedding space—which

could bemisleading or influenced by noise. To this end, we design the token-replacement experiments:

that is, we replace the tokens of a sample with the style tokens (and vehicle type tokens) from other

groups, then observe the resulting behavioral changes and compare the effects. The details are pro-

vided in Section Truck as Follower and Section Cross-over Test case: Effectiveness of the embedding.

To illustrate this more intuitively, we further provide two examples showing that the observed

differences originate from genuine variations in driving style, rather than superficial disparities in the

embedding space. The details are provided in Section Example: Style Counterfactual Test.

3.4.3. Incorporating Style in Testing
Differentmodels require different input structures, and to ensure a fair comparison, the following setup

decisions were made:

Non-style-aware Testing: Due to the limited size of the testing set and the fact that LSTM
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Figure 3.4: Training and testing data handling involving style information

and plain Transformer models do not incorporate explicit style information, we ensure a comparable

setting by using average-style representations. Specifically, the IDMmodel is calibrated using themean

parameter values across all trajectories in the training set, as described in Table 3.2. The process of

training and testing dataset handling is illustrated in Figure 3.4.

Incorporating Style-specific embeddings into Testing: For the Style Transformer, how-

ever, group-specific average embeddings are employed, as illustrated in Figure 3.4. The testing dataset

is divided into two subsets: 30% of the data is used for learning driving styles. Since these trajectories

span 90 seconds, they provide more stable and informative representations for style learning. To avoid

bias when computing the average style token for each group, 30% of the data from each group is evenly

sampled. Meanwhile, clustering is performed using the trained style embedder and the k-means algo-

rithm based on the training dataset, which offers group IDs for each vehicle. Finally, the mean style

embedding for each group (derived from the training set) is calculated and directly provided to the style-

aware CF model, skipping the embedder stage. In this setup, the tokens obtained from training act as

global style priors—their group identities, rather than the tokens themselves, are used in subsequent

steps.

During testing, the tokens are re-estimated from the Style-Learning subset (30% of the test data)

under fixed cluster assignments to achieve stable style representation, while avoiding any data leakage

from the testing.

Note, the training dataset covers all vehicle IDs present in the test data, thereby preventing situa-

tions where the driving style of a specific trajectory remains unidentified in the clustering process based

on training dataset. Further details regarding model inputs and outputs can be found in Table 3.3.
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Figure 3.5: Calibrated parameter distribution of IDM

Parameter vF0 ∆x0 h0 amax b

Zen-data Calibrated Values 24.70 m/s 1.70 m 1.19 s 1.70 m/s2 2.53 m/s2

Table 3.2: Calibrated IDM parameters on Zen-traffic Data

3.4.4. Benchmark models
Threemodels are considered in this study: the rule-based IntelligentDriverModel (IDM), a Long Short-

duration Memory (LSTM) network, and a Transformer-based model.

IDM
The IDM serves (Treiber et al., 2000) as a baseline, simulating acceleration based on current velocity,

spacing, and leader speed. It is interpretable, grounded in domain knowledge, and its five parame-

ters directly reflect driving style, but it only supports one-step prediction. For details, see Appendix

Intelligent Driver Model.

To avoid using an uncalibrated IDM and drawing biased conclusions about the proposed model,

the IDM is calibrated using the same training dataset.

Calibration is performed per car-following (CF) pair using the genetic algorithm (Mitchell, 1996),

meaning the algorithm searches for the best-fitting parameter set for each CF pair individually. The

detailed procedure of the genetic algorithm is omitted here, as it falls outside the scope of this study.

This calibration yields a distribution of IDM parameters across all CF pairs, as shown in Figure 3.5.

It can be roughly observed that the parameters calibrated through IDM are scattered, indicating that

driving behaviors are heterogeneous in this dataset. Since IDM serves as the benchmark model for

comparison with the model proposed in this study, we use the average parameter values to represent

an idealized average driver.

To ensure a fair cross-model comparison, the IDM is constrained to adopt uniform parameters

across all CF pairs, as is also the case for the other benchmark models. Instead, the average values

from the parameter distribution are adopted as the final IDM setting. This calibrated IDM will serve

as the benchmark model in the following analysis.

In total, 1000 trajectories are used for calibration, which are randomly sampled from the training

dataset. Since the dataset is large and only the average parameter setting is required, calibration is

performed on this subset of trajectories.

LSTM
The LSTM model (Hochreiter and Schmidhuber, 1997) uses a 6-second historical window with fea-

tures including vehicle velocities, spacing, and lengths to account for heterogeneous vehicle types. In
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this thesis, the hidden states are used as outputs and further compressed by a linear layer into a one-

dimensional time series representing the predicted acceleration. However, the model cannot access

future leader behavior due to the sequential structure, limiting its long-duration prediction ability. For

details, see Appendix LSTMModel and the architecture can be found in Table A.3.

Transformer
The Transformer model (Vaswani et al., 2017) extends this by incorporating future leader behavior

through a label window while masking follower movements to prevent data leakage. It enables longer

prediction horizons and better handles long-range dependencies, though it requires careful input seg-

mentation andmasking design. However, it doesn’t take driving style into consideration in its architec-

ture and is unable to offer any insights into driving style. For details, see Appendix TransformerModel,

and the architecture can be found in Table A.2.

3.4.5. Overview of Models
An overview of the hyperparameters, along with the model inputs and outputs, is provided in Table 3.3.

Parameter

Model
LSTM Transformer Style-aware CF IDM

Hyper-parameter Setting

Learning rate 0.001 0.001 0.001 -

Batch size 64 64 64 -

Epochs 20 30 30 -

Dropout 0.0 0.1 0.1 -

Activation Function Sigmoid ReLU ReLU -

Maximum Norm Value 10.0 10.0 10.0 -

Optimizer Adam Adam Adam -

Data Segmentation Setting (seconds)

Prediction window (Tpred) 2 4 4 0.1

History window (Thist) 6 6 6 0.1

Label window (Tlabel) - 4 + 4 4 + 4 -

Style window (Thist) - - 6 -

Features

History window(input) vF ,∆v,∆x, lF , lL vF , vL,∆x

History Label window (input) - vL, vF -

Future Label window (input) - vL, ⟨vF ⟩Thist -

Style Series (input) - - (τ, h,∆x, vF ) -

Prediction window (output) aF aF aF aF

Table 3.3: Detailed parameters in training process (⟨vF ⟩Thist indicates the average value of v
F in the history window)

Note that IDM requires the parameters as well. The parameters are shown in the Table 3.2.



4
Field Data

This thesis seeks to examine the mechanisms underlying congestion formation as influenced by the

interaction between various driving styles. Therefore, a robustly trained, style-specific data-driven

car-following model is essential as the foundation of this investigation. This necessitates the use of

high-caliber training data. The current chapter will elucidate the methodology for obtaining a reliable

dataset.

4.1. Data Requirements and Source
4.1.1. Data Requirements
To guarantee that the data fully meets the requirements for subsequent tasks, two key requirements

must be satisfied:

• Consistency: Accurate position and speedmust be reliably derived from the acceleration values,

ensuring that the trajectories are kinematically plausible.

• Car-following: All leader–follower pairs must genuinely be engaged in a car-following relation-

ship, such that the follower’s behavior reflects a response to the leader’s actions.

These two requirements are critical for training and testing a car-following model. With accel-

eration as the output and position-based loss (assuming a kinematic model inside the loss function),

consistency is essential to avoid invalid supervision. Likewise, genuine car-following interactions must

be ensured; otherwise, if the leader and follower are effectively uncoupled, the model cannot learn

meaningful behavior.

4.1.2. Data Source
The Zen traffic dataset contains vehicle trajectory data collected on Osakamotorways, covering a range

of traffic states from free-flow to congestion (Figure B.1 and Figure B.2). This diversity enables compre-

25
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hensive training data for car-following models. The dataset also includes lane-change events and road

layouts, supporting future research.

However, inconsistencies exist (Section Processing: Data Consistency), and real-world motorway

factors—such as lane changes and off-ramp entries—may interfere with pure car-following dynamics.

Thus, rigorous filtering is essential to isolate relevant trajectories.

The dataset spans three routes in Osaka: Route 4 (5 scenes), Route 11 (5 scenes), and Route 13 (6

scenes). While each route varies in geometry, all featuremerging sections and diverse traffic conditions,

making them suitable for studying car-following behavior across traffic regimes.

Data from a section of Route 13 using theMoving Light Guide System (MLGS) is excluded to avoid

bias. Road slopes and detailed geometries are beyond this study’s scope.

Finally, The Zen dataset provides detailed road geometry and ramp locations, enabling the exclu-

sion of trajectories in weaving areas where merging behavior introduces uncertainty. Lane ID informa-

tion, which reflects lane-changing behavior, is available but not utilized in this study.

4.2. CF-related Trajectories Extraction (Segmentation)
Table 4.1: Filtering for extracting valid car-following data

Filters Description

No weaving area Trajectories that pass through weaving areas are excluded.

No lane change in fol-

lower

The follower in a car-following pair must not change lanes

during the selected time window.

No MLGS system Trajectories passing through the MLGS area while the sys-

tem is enabled are excluded.

To prepare uniform-length samples for model training, the remaining trajectories are segmented

after initial filtering. Raw trajectories often include disruptions from lane changes or other maneuvers

(Table 4.1), disrupting car-following continuity. Varying durations of the vehicle trajectories also hinder

the unified data format, which is ideal for training.

To address this, we extract fixed-duration segments with either fixed or randomized step sizes to

balance sample diversity and redundancy. Each segment includes a time series of both target and leader

vehicles and is filtered for quality.

As the output of the segmentation algorithm, the extracted dataset format is shown as Table B.1.

Note that, since the raw dataset doesn’t comprise the acceleration data, and considering the Kalman

filtering will be applied in the next step, the acceleration will be introduced and derived using the Fig-

ure A.1.

Since the Zen-traffic trajectory data is collected at different times and date, there are multiple tra-

jectory dataset on one route. Eventually, this data is concatenated into a single dataset. Eventually,

a substantial number of valid CF trajectory pairs were collected. In total, 3 different datasets are ex-

tracted, a 30-second one is later used for the training and validation process (see Section Model Train-
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ing), and a 90-second (long-duration) one is applied in testing (see Section Car-following Simulation:

Recursive Prediction). The format of the extracted data is shown in Table B.1.

4.3. Segmented Car-following Data Overview
Various factors can affect data quality during collection, particularly for trajectories extracted from

video footage. To assess the reliability of the dataset, the

Speed and Acceleration Profile
Speed distribution is an indicator to examine the traffic states in the dataset. Ideally, the dataset is

required to include various traffic states, such as free-flow and congestion.

As shown in Figure 4.1, most vehicles operate at relatively low speeds, with an average speed of

46.8 km/h. This observation is consistent with the speed contour plots presented in Figure B.1 and

Figure B.2, which indicates that congestion frequently occurs on the studied road segment. The align-

ment between the speed distribution and the observed traffic conditions supports the conclusion that

the dataset captures a broad spectrum of traffic states, ranging from congested low-speed flows to free-

flow high-speed conditions. Such variability is beneficial for model training, as it enables learning

across diverse traffic scenarios.

Acceleration is not directly available in the raw dataset, which contains only vehicle positions and

velocities. Consequently, acceleration must be derived from the recorded velocity profiles using for-

ward differentiation (see Figure A.1). Given that the data originates from video footage, it is likely that

position is the only directly observed variable, while velocity is computed through additional tempo-

ral processing. As a result, the derived velocity—and subsequently the acceleration—may be affected

by noise. Therefore, analyzing the distribution of acceleration, particularly identifying abnormal or

extreme values, is essential for assessing the quality and reliability of the dataset.

As shown in Figure 4.1, the acceleration values fall within a reasonable range, indicating that the

dataset does not suffer from severe issues with abnormal values—an observation consistent with em-

pirical traffic studies that report typical acceleration values within (-8, 5) m/s² (Montanino and Punzo,

2015).

Consistency
However, while data-drivenmodels typically output acceleration,model validation is usually performed

using position and velocity. This requires the dataset to maintain kinematic consistency to ensure re-

liable derivation of these variables. Thus, kinematic inconsistency between acceleration, velocity, and

position, which can hinder the training process, remains a concern. To address this, Section Processing:

Data Consistency will introduce a method for improving consistency to an acceptable range.

Car-following or not: trajectory examples
To validate the extracted dataset, two representative trajectories (Figure 4.2) were selected for detailed

examination to identify and analyze potential issues within the current data.

The left panel clearly demonstrates a car-following behavior, characterized by a noticeable lag in

the follower’s velocity relative to the leader’s, indicating that the follower is actively responding to and
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Figure 4.1: Acceleration and speed distribution (both leader and follower)

mimicking the leader’s actions. The inter-vehicle gap remains within a reasonable range, further sup-

porting this interpretation. The calculated time headway for the follower is approximately 1.2 seconds,

which aligns well with typical car-following conditions.

Conversely, the right panel reveals a scenario where such a car-following relationship is absent.

The follower’s velocity shows little correlation with the leader’s behavior, and the gap between the ve-

hicles steadily increases over time. This pattern suggests external influences on the follower, such as

interference from lane-changing vehicles or an impending lane change due to proximity to an off-ramp.

The follower’s time headway in this case is significantly larger, approximately 2.89 seconds, reinforcing

the conclusion that the vehicles are not engaged in car-following.

These contrasting cases underscore the importance of filtering the dataset to exclude trajectories

where genuine car-following is not observed. Such filtering is essential to ensure data quality and im-

prove the robustness of subsequent modeling and analysis efforts.

Based on these observations, the vehicle pairs that are not in the CF, and the trajectories with

abnormal acceleration values are filtered out in Table 4.3.

4.4. Processing: Data Consistency
In this study, consistency refers to the error between derived values and recorded values of lower-order

traffic variables like speed and position.

The raw dataset contains recorded values for both velocity and position per vehicle per timestep.

However, it’s unclear whether the consistency between them is maintained throughout each trajectory.

In other words, the recorded velocity might not match the position data. While this issue isn’t serious

over short time periods, it becomes problematic for long-duration prediction as errors accumulate over

time. Eventually, the data can become significantly distorted since it accumulates all errors from the

beginning.

To effectivelymeasure the extent of the inconsistency, the absolute deviation between the recorded

value and the value derived from the kinematic model in Equation 4.1 is chosen as the inconsistency
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Figure 4.2: Trajectory examples in raw dataset

error. In the expanded form,

errort = xt − x0 −∆t

t∑
i=1

(v0 +∆t

i∑
j=1

aj) (4.1)

the error can be calculated at every timestep using Equation 4.1. Instead of using the average error,

the errors in the latter timestep are more informative than the beginning since they accumulate over

time. The error at the very last timestep is adopted as the inconsistency error.

As is shown in the Figure 4.4, the orange distribution refers to the position error in the raw dataset.

The error is normally distributed, with themaximumvalue reaching 30meters. This implies the recorded

speed and the position data are not consistent, and in some samples this could hinder the training by

implicating unnecessary inconsistency error.

4.4.1. Kalman Filter Setup
To mitigate this effect while preserving both speed and position information, we employ Kalman filter-

ing embedded with a 1-D and first-order kinematic model (Equation 4.2) to enforce kinematic consis-

tency between these variables. See section A.2 for details of the Kalman Filtering model and algorithm

involved in this study.

[
xKF
t

vKF
t

]
=

[
1 ∆t

0 1

][
xt−1

vt−1

]
+

[
0

∆t

]
at−1 (4.2)

In Equation 4.2, xKF
t and vKF

t denote the filtered position and velocity at timestep t, respectively.



4.4. Processing: Data Consistency 30

Symbol Value Description

P0

[
100 0

0 100

]
State covariance matrix: we assume the noise in position doesn’t

affect the noise in velocity.

R

[
10 0

0 100

]
Measurement noise covariance matrix: it’s assumed the position

is more accurate than velocity since the data is collected in video

footage and the position is directly accessible.

Q

[
s2pos 0

0 s2speed

]
Process noise covariance: spos = 0.5 amax∆t2, sspeed = amax∆t,

modeling unmodeled acceleration.

Table 4.2: Parameter setting of the Kalman filter (units on the diagonals: position [m2], velocity [(m/s)2])

∆t is the discrete time step, and at−1 is the measured acceleration at the previous step, used as an

external input to update the velocity.

To set up the Kalman filter, the parameters relevant to the uncertainty must be determined before-

hand. Based on the experience and knowledge of the dataset, the parameters are shown in Table 4.2

along with the reasons behind them. The parameters are tuned to ensure the trends in speed and posi-

tion curves match the raw data as well.

4.4.2. Results
Following the indicated parameters, three example trajectories (Figure 4.3) are selected to be presented

in the thesis. Note that the Kalman filter doesn’t involve the acceleration as a part of the state. The

accelerations in the following analysis are derived from the filtered speed.

After the filtering, acceleration becomes stable with most of the jitter smoothed. Meanwhile, the

trends in speed and spacing are well-preserved, ensuring the training data is not overly manipulated.

It can be observed that some peaks and dents appear to occur earlier or later. This could be the result

of fixing the inconsistency error.

Figure 4.4 illustrates the results of the enhanced consistency. The filtering successfully narrows

the position error distribution down, from around 30 to less than 15 on the edge. Nevertheless, some

inconsistencies remain, as a balance between genuineness and consistency must be maintained: for

data points that cannot be reliably corrected, we set their error at the threshold level and subsequently

discard them.

However, some trajectories cannot be effectively corrected by Kalman filtering, even though they

appear normal in the raw dataset. These trajectories are severely affected by consistency issues. When

Kalman filtering is applied, it introduces noticeable jitter into the processed data rather than improving

it (Figure 4.5). To prevent such artificial disturbances in the filtered dataset, an acceleration range filter

is introduced accordingly.
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Figure 4.3: Examples of filtered trajectories (Orange: Raw, Blue: Kalman)

Figure 4.4: position inconsistency error before and after the Kalman filtering (error unit: [m])
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Filter Range Description

In CF relationship h ∈ (0, 2) s Average time headway (Equation 4.3) of the full tra-

jectory

position inconsistency error error ∈ (0, 2)m Position inconsistency error (Equation 4.1) at the

last timestep

abnormal jitters a ∈ (−10, 6)m/s2 any trajectory includes an acceleration outside the

range (i.e., abnormal jitters), the trajectory shall be

discarded

Table 4.3: filters applied for refining dataset

4.4.3. Summary
In section SegmentedCar-followingDataOverview, the roughdata overview reveals that the car-following

data might include pairs that don’t in fact have a CF relationship, which means the follower doesn’t re-

act to the behavior of the leader. Based on the intermediate conclusions we drew from that section, we

set up the following filters to ensure the data only contains the pairs with a strong relationship.

Apart from the mentioned pre-processing filtering (Table 4.1), Table 4.3 shows the filters that are

set up to ensure the training data contains meaningful car-following clips.

The average time headway filter is to ensure the follower and leader are, in fact, in the car-following

relationship. Worth mentioning, when the follower vehicle runs at a relatively low speed, the time

headway could become extremely large; therefore, the time headway h is calculated as Equation 4.3.

h =
∆x

max(vFollower, 0.1)
(4.3)

Position inconsistency errors, as previously mentioned, are useful for identifying trajectories with

significant noise that cannot be effectively corrected by the Kalman filtering process. Rather than at-

tempting further repair, discarding such trajectories is a more rational choice.

In the Kalman filtering procedure, based on the chosen parameter settings, the kinematic model is

given greater weight than themeasurements. As the raw data often suffers from position inconsistency,

the Kalman filter attempts to reconcile these inconsistencies, which can result in abnormal jitters in the

filtered trajectories. These fluctuations do not reflect realistic driving behavior, as the resulting acceler-

ation may reach up to 8 m/s2 or more (see Figure 4.5). Although these jitters do not appear to directly

affect the velocity, they are used as ground truth in downstream tasks, which negatively impacts model

training. Therefore, trajectories with such poorly filtered noise are excluded from further analysis in

the dataset.

4.5. Processed Dataset
In addition to ensuring data quality through Kalman filtering and pre-processing, it is necessary to

examine the datasets used for model training and evaluation. Two datasets are introduced in this sec-

tion: a short-duration dataset with a 30-second window and a long-duration dataset with a 90-second
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Figure 4.5: Jitters in acceleration

window.

The 30-second dataset is primarily designed to facilitate efficient model training by reducing com-

putational cost and increasing the number of usable samples. Shorter time windows help minimize

the impact of lane-changing and other non–car-following behaviors, thereby ensuring that the training

data primarily reflects stable following interactions.

In contrast, the 90-second dataset is used to evaluate model performance over longer prediction

horizons and to enhance the learning of driving styles. Longer sequences allow the model to capture

more persistent behavioral patterns and temporal dependencies, which are essential for style embed-

ding and long-term trajectory prediction experiments.

Note that there is no temporal overlap between the two datasets for a certain CF pair to prevent

data leakage. However, overlapping in vehicle IDs is acceptable—and even beneficial—since the model

can later recognize and transfer the same drivers’ styles learned from the training dataset to the testing

dataset, allowing consistent application of learned style patterns across different temporal contexts.

Lastly, two major components in dataset require further examination to ensure the successful ex-

ecution of the downstream tasks.

Vehicle type can substantially influence car-following (CF) behavior, as trucks and passenger cars

differ in length, weight, and acceleration capability. Drivers tend tomaintain larger time headways and

lower speeds when following trucks, reflecting cautious behavior due to reduced visibility and slower

vehicle responses. To distinguish between them, a vehicle length threshold of 7 meters is applied, fol-

lowing common classification practices.

In addition to vehicle type, three indicators—time headway, acceleration, and speed—are analyzed

to describe following dynamics. Their distributions reveal how closely a follower reacts to its leader and

how different vehicle types contribute to behavioral variability. Examining these distributions helps

verify whether the data-driven model captures both average tendencies and variations observed in real

traffic.
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Leader

Follower
Truck Passenger Car Total

Truck 1786 7944 9730

Passenger Car 4245 30232 34477

Total 6031 38176 44207

Table 4.4: number of vehicle type in the short-duration (train) dataset

Figure 4.6: Vehicle Length in filtered data

4.5.1. Training Dataset (Short-duration in 30 seconds)
Vehicle Type
The Table 4.4 and Figure 4.6 present the vehicle profile in the filtered dataset. It is evident that passen-

ger cars constitute the majority of the data, but a substantial number of trucks are also present. This

diversity helps ensure that the dataset reflects a wider range of driving behaviors and vehicle dynamics,

which is beneficial for developing more robust and generalizable models.

Indicators
After Kalman filtering, the overall distribution of average time headway remains largely unchanged (see

Figure 4.7, 2)). As discussed in Section Car-following or not: trajectory examples, a large time headway

may suggest that the vehicle pair is not engaged in a car-following (CF) relationship. At the same time,

since the model requires a sufficient amount of training data, we adopt a threshold of 2.0 seconds to

Figure 4.7: Distribution of average time headway, velocity and acceleration per sample (both leader and follower) in training

and validation dataset



4.6. Conclusion 35

Figure 4.8: Distribution of time headway, velocity, and acceleration per sample (both leader and follower) in testing data

distinguish between CF and non-CF pairs. Specifically, if the time headway exceeds 2.0 seconds, the

corresponding trajectories are excluded from further analysis.

Similarly, to ensure that the Kalman filter does not introduce additional noise into the speed and

acceleration signals, these two profiles are presented in Figure 4.7. Note that, unlike average time head-

way, these two distributions are not aggregated over the time dimension. As shown, both speed and

acceleration remain within reasonable ranges, consistent with the observations reported in Montanino

and Punzo (2015).

4.5.2. Testing Dataset (Long-duration in 90-second)

Leader

Follower
Truck Passenger Car Total

Truck 84 686 770

Passenger Car 194 3409 3603

Total 278 4095 4373

Table 4.5: Number of vehicle types in the filtered long-duration (test) dataset

Vehicle Type
While the vehicle type distribution largely matches that of the training set (Table 4.5), there are very

few samples with trucks as follower vehicles in the test set. This is likely due to the limited presence of

trucks and the short 90-second trajectory duration, during which trucks may be frequently overtaken

and thus lack a stable leader. Nevertheless, in the style embedding experiments, truck behavior can

still be incorporated by explicitly modifying the model input to reflect truck-related features.

Indicators
As shown in Figure 4.8, the test dataset covers a broad range of traffic states—from low-speed conges-

tion to high-speed free flow—similar to the training data. This consistency helps avoid bias in the final

evaluation.

4.6. Conclusion
This chapter introduces two main issues identified in the dataset: data inconsistency and the pres-

ence of non-car-following (non-CF) relationships. Data inconsistency introduces additional noise into
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the deep learning model, which integrates a kinematic model within its loss functions. Such noise

significantly hinders the training process. Furthermore, follower-leader pairs without a car-following

relationship represent cases where the follower vehicle is effectively in free flow; thus, the follower’s

behavior cannot be reliably predicted based on the leader’s maneuvers.

While applying the Kalman filter to mitigate inconsistency, abnormal jitters appeared in the fil-

tered data. This is likely caused by the conflict between the noisy raw data and the kinematic model

embedded in the filter attempting to suppress this noise.

To identify and remove non-CF pairs, the average time headway was chosen as an indicator, with

a threshold of 2.0 seconds used to distinguish between CF and non-CF pairs. Concurrently, jittering

was further reduced by filtering out trajectories with abnormal acceleration values. The data handling

procedure is also illustrated in Figure 1.1.

The resulting dataset is now cleaned and consistent, suitable for direct input into model training.

The following chapter will focus on driving style, which is a core aspect of the model and plays a signif-

icant role in traffic congestion—the primary objective of this study.



5
Embedding and CF Model Evaluation

Based on the trained CFmodel and the style-embedder, this section evaluates two aspects: (i) the qual-

ity of the clustering and the influence of the extracted style embeddings, and (ii) the joint performance

of the CF model with the style embedder to assess how these embeddings enhance prediction accuracy.

5.1. Style Embedding Results
This section introduces style embedding and its clustering results, followed by their impact on the style-

CFmodel. Style embeddings, extracted from a longer testing dataset (90 seconds), offer more informa-

tion and traffic states than the training dataset (30 seconds), forming the basis for PART II analysis.

Truck-led car-following pairs are excluded from truck embedding extraction and clustering be-

cause they are rare in the dataset, with only 770 occurrences out of 3603 in the test dataset, see Table 4.5.

Additionally, when driving behind a truck, it becomesmore challenging to discern the follower’s driving

style, as the behavior is largely influenced by the truck. Therefore, this omission improves precision in

analyzing followers’ behavior.

5.1.1. Clustering Results
The results in Figure 5.1 show relatively well-separated clusters. P2 and P3, which may reflect greater

variability in behavior. P1 and P4 appear compact and contain themost samples, suggesting theymight

capture a common and stable driving style.

These results reinforce the view that driving style in the embedding space is not dichotomous but

continuous, consistent with Sagberg et al. (2015). The smooth transitions and overlapping boundaries

suggest that driver behavior is better understood as a spectrum, rather than a set of discrete categories,

such as merely aggressive vs. timid.

Meanwhile, Figure 5.2 illustrates the cluster composition of follower vehicle types. The left bar

37
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Figure 5.1: Clustering of the driving style embedding in reduced

dimensions (Silhouette Score: 0.1878 in embedding space)

Figure 5.2: Share of styles in each group

Table 5.1: Cluster-wise summary statistics (PC: Passenger Car)

Cluster P1 Cluster P2 Cluster P3 Cluster P4

τ̄ 1.77 ± 0.39 2.00 ± 0.42 2.18 ± 0.40 1.71 ± 0.40
h̄ 1.31 ± 0.33 1.43 ± 0.28 1.65 ± 0.22 1.12 ± 0.30
∆x̄ 15.11 ± 4.87 19.73 ± 5.30 21.14 ± 5.06 14.63 ± 4.66
v̄F 11.68 ± 2.69 13.68 ± 2.75 12.76 ± 2.68 13.14 ± 2.84
στ 1.01 ± 0.19 1.14 ± 0.17 1.14 ± 0.15 1.04 ± 0.20
σh 0.28 ± 0.12 0.40 ± 0.44 0.40 ± 0.17 0.30 ± 0.09

Truck Count 66 31 55 42

PC Count 1315 446 554 1094

represents the proportion of trucks classified into each cluster, whereas the right bar corresponds to

passenger cars. For trucks, the four clusters are distributed more evenly. Although P1 still accounts

for a notable proportion, P3 appears to take a higher share compared to P3 in passenger cars.

In contrast, most passenger car samples are concentrated in P1 and P4. This suggests that passen-

ger car drivers predominantly exhibit P1/P4-type driving styles. It should be noted, however, that the

number of trucks is considerably smaller than that of passenger cars, whichmay influence the observed

proportions.

5.1.2. Interpretation: Cluster Profile
After obtaining the clusters, a tentative interpretation is provided. Based on our explanation for traffic

variables and their relationships to human factors (see Table 3.1), the following table Table 5.2 summa-

rizes the possible interpretation of each cluster based on the features described inDriving Style Features

and their corresponding potential human factors discussed in Table 2.2. The details of the style feature

statistics are also provided in Table 5.1 for reference, along with the interpretation.
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Table 5.2: Interpretation of each cluster based on driving style and associated human factors

Cluster Driving style Key features Inferred human factors

P1 Steady but impatient Short h̄ (1.31 s), small spac-

ing (15.11 m), low σh

Mild aggressiveness, efficient

car-following, strong focus on

speed maintenance

P2 Slightly hesitant Moderate h̄ (1.43 s), longer

τ̄ (2.00 s), high in variance

(στ and σh)

Occasional hesitation, longer

anticipation, balanced between

caution and efficiency

P3 Defensive and

strongly conserva-

tive

Longest τ̄ (2.18 s), largest

spacing (21.14 m)

Most cautious group, safety-

oriented, delayed responses,

stable but least efficient

P4 Fast-reacting but un-

stable

Lowest h̄ (1.12 s), lowest τ̄

(1.71 s), higher variance (στ

and σh) compared to P1

Aggressive, impulsive decisions,

high responsiveness but less sta-

ble control

Figure 5.3: Replacing the follower with a truck (i.e., lF = 10m) per cluster

5.2. Driving Style Embedding Validation
The driving style embedder is jointly trained with the car-following model, allowing it to automatically

extract meaningful style representations as long as they help improve prediction accuracy.

Following the presentation of prediction results, we now focus on validating whether the learned

embeddings are indeed functionally meaningful. In particular, we examine whether the style token is

effectively utilized by the model and whether it captures interpretable aspects of driving behavior.

To this end, we adopt three complementary validation perspectives to assess whether the style

embedding contributes to the model’s predictions and meaningfully characterizes individual driving

styles.

5.2.1. Truck as Follower
Considering the scarcity of truck followers in the test set (Table 4.5), a direct statistical analysis is in-

feasible. However, since vehicle length is included as an input feature, we emulate truck behavior by

modifying the follower’s length (lF = 10m) in the model input. Note that clustering is no longer appli-

cable under this setting.



5.2. Driving Style Embedding Validation 40

As shown in Figure 5.3, replacing the follower with a truck (lF = 10 m) causes clear shifts in the

model-predicted distributions of headway (h) and reaction time (τ ) across all clusters (P1–P4).

In the top row, the headway distributions (blue for trucks, orange for passenger cars) show onlymi-

nor shifts: the peak positions remain similar, indicating that the model predicts comparable following

distances for both vehicle types. However, in the bottom row, the reaction-time distributions consis-

tentlymove leftward for trucks,meaning that the artificial truck followers exhibit shorter reaction times.

This pattern is evident across all clusters except for Cluster P2 (in the second column), which likely in-

cludes more trajectories with highly dynamic or volatile leader movements. In such cases, followers

need to stay highly alert to maintain stability. However, since trucks are less agile than passenger cars,

they tend to exhibit slightly longer reaction times, leading to a minor deviation from the general trend.

These observations suggest that while the model maintains similar car-following spacing behav-

ior regardless of vehicle type, it systematically predicts faster reactions for trucks. This aligns with the

notion that truck drivers, often professionally trained and more attentive, respond more promptly to

leader behavior, even though their overall following distance remains comparable (Ossen and Hoogen-

doorn, 2011).

5.2.2. Cross-over Test case: Effectiveness of the embedding
To examine how driving style influences behavior under comparable traffic conditions, the crossover is

conducted within each true cluster—i.e., the original style group to which the samples belong—so that

scene-related factors (e.g., leadermotion, traffic density) remain controlled. In Figure 5.4, each subplot

shows the distribution of samples from a given true cluster when their original embedding is replaced

by the centroid of another cluster. Rows correspond to the original (true) cluster label, while columns

indicate the substituted embedding (cluster centroid).

This analysis is motivated by the possibility that cluster embeddings encode both scene and behav-

ioral attributes. By systematically swapping embeddings, we aim to isolate the behavioral component

and assess its influence on average time headway h̄. Observing a single column reveals how one em-

bedding modulates samples from various clusters, while a single row illustrates how the same group

responds to different embeddings. Significant shifts in h̄ distribution across embeddings suggest that

the learned embedding space captures behavioral traits independently of scene context.

As shown in Figure 5.4, embeddings P2 and P3 produce the most distinct effects on behavior, re-

flected in the highest and lowest values of average reaction time (τ̄ ) and time headway (h̄), respec-

tively. According to the cluster interpretation table (Table 5.2), P2 corresponds to conservative drivers—

characterized by long headways and delayed reactions—while P3 represents reactive and aggressive

behavior. These patterns are consistently reflected across multiple source clusters, supporting the se-

mantic validity of the learned embedding.

These results confirm that the style embedding plays a decisive role in modulating car-following

behavior. By substituting embeddings, the driver behavior canbe systematically altered, demonstrating

the interpretability and controllability of the embedding space.
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Figure 5.4: Cluster Centroid Embedding Substitution Test(each cluster evaluated using its embedding centroid, dashed lines

indicate the mean values, and solid lines the distribution)

5.2.3. Example: Style Counterfactual Test
To visualize the behavioral differences inducedby embedding replacement, two illustrative experiments

are presented. Pair 1 compares embeddings from cluster P1 and P2—two behaviorally distinct groups—

to highlight the contrast. Pair 2 compares a passenger car and a truck follower, both using the same

embedding but differing in vehicle length (lF ). All experiments are conducted on the same sample

(sample 10 from cluster P1). For clarity, the position trajectories are flattened by subtracting a reference

motion term −9.5t.

As shown in Figure 5.5, the P1 embedding leads to slightly earlier reactions and closer spacing

during the cruising regime (after 40 seconds), consistent with its profile in Table 5.2. In contrast, Fig-

ure 5.6 shows that the truck follower reacts more quickly than the passenger car but maintains a larger

gap during deceleration phases (around 10–20 seconds). This behavior is attributable to the longer

vehicle length and aligns with earlier findings on reaction time differences, reinforcing the conclusion

that follower type modulates model behavior even when the style embedding is held constant.

5.3. CF Model Testing
Based on the aforementioned long-duration prediction task and evaluation objectives, the experimental

setup has already been established. The proposed framework is applicable to all models, irrespective

of whether they are data-driven or not. In this chapter, our focus shifts to long-duration prediction.

Therefore, the following indicators are introduced to provide a comprehensive evaluation of model

performance.

5.3.1. Error Statistics
Given the heterogeneity of driving styles and the dynamic nature of traffic—such as acceleration, decel-

eration, and cruising—prediction performance can vary across contexts. Aggressive following or larger

headways, for example, affect the driving states, which is a huge uncertainty in model prediction. To

capture this variability, we report not only the mean and standard deviation but also the 25th, 50th

(median), and 75th percentiles (Q1–Q3) for each error metric in Table 5.3. These statistics provide a

more complete view of error distribution and model robustness under diverse conditions. On top of

that, the distributions of the metrics are plotted for reference Figure 5.7.
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Figure 5.5: Embedding P2 and P3 follower, P2 h̄ = 1.67, τ̄ = 1.57; P3 h̄ = 1.58, τ̄ = 1.41

Figure 5.6: Truck and passenger car follower, Truck h̄ = 1.70, τ̄ = 1.82; Passenger car h̄ = 1.42, τ̄ = 1.79 (Trajectory Sample

14)
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Figure 5.7: Follower’s Position Metrics

Among the error metrics, the Mean Squared Error (MSE), Mean Absolute Error (MAE), and Root

Mean Squared Error (RMSE) are employed to quantify prediction accuracy. MSE penalizes larger er-

rors more due to squaring, making it sensitive to outliers, while MAE offers a direct measure of average

error magnitude. RMSE, as the square root of MSE, maintains unit consistency with the original vari-

able. All metrics are computed based on the predicted vehicle position xF
t , which serves as the primary

evaluation variable. As the lowest-order variable in the loss function (Equation 3.1), it already incor-

porates all propagated noises, and has been widely used in previous CF studies (such as Huang et al.

(2018)). The metrics are computed per individual trajectory to facilitate statistical analysis over the

trajectories that are collected in different driving states.

The error metrics are computed as follows:

MSE =
1

T

T∑
t=1

(
xF
t − x̂F

t

)2
, (5.1)

MAE =
1
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∣∣ , (5.2)
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√
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(
xF
t − x̂F

t

)2
. (5.3)

5.3.2. Evolution of Errors
Since we adopt a recursive prediction approach—where the output at each timestep serves as input for

the next—prediction errors can accumulate over time. This compounding effectmay cause amodel that

performs well initially to diverge significantly in the long term. Therefore, it is crucial to evaluate how

prediction errors evolve as the forecast horizon extends. To this end, we visualize the error evolution

curves for all four models over time. These curves allow us to assess the stability and robustness of

each model under extended prediction durations, providing insight into both short-term accuracy and

long-duration reliability.

Figure 5.8 shows the position MAE evolution over time for all models. The top plot presents the

mean MAE at each prediction timestep, with shaded areas indicating one standard deviation (µ ± σ),
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Metric Statistic Style-aware

CF

Transformer LSTM IDM

MSE [m2]

Mean 36.54 39.29 65.49 43.54

Std Dev 45.03 43.95 58.97 49.81

Q1 (25%) 11.50 13.90 24.59 12.11

Q2 (Median) 22.16 25.92 41.39 26.01

Q3 (75%) 43.65 47.97 69.31 56.80

RMSE [m]

Mean 5.18 5.26 6.79 5.64

Std Dev 2.69 2.41 2.68 3.04

Q1 (25%) 3.42 3.49 4.92 3.35

Q2 (Median) 4.59 4.76 6.32 4.94

Q3 (75%) 6.30 6.45 8.17 7.30

MAE [m]

Mean 4.25 4.28 5.57 4.82

Std Dev 2.36 2.04 2.32 2.83

Q1 (25%) 2.72 2.83 3.96 2.72

Q2 (Median) 3.71 3.85 5.16 4.12

Q3 (75%) 5.21 5.27 6.70 6.20

Table 5.3: Performance statistics of different models on prediction metrics (rounded to 2 decimals).

capturing both the average trend and variability. The bottom plot displays boxplots at every 10-second

interval, illustrating the error distribution across samples as the prediction horizon increases.

Figure 5.8 illustrates the evolution and distribution of the positionMAE error across the prediction

horizon. In the top plot, we observe that although all models show increasing error trends over time,

the LSTMmodel exhibits significantly larger variance, as shown by the broader confidence band. This

is likely due to its lack of access to the prediction window information, resulting in instability in long-

duration forecasting.

In the lower box plot, the error distribution across time further supports this observation. Both

LSTM and the plain Transformer models demonstrate higher error variance, which suggests their sen-

sitivity to short-term behavioral fluctuations—such as sudden acceleration or deceleration—present in

individual driving styles. In contrast, the Style-aware CF and calibrated IDM models maintain rela-

tively stable error distributions over time. This robustness can be attributed to the inclusion of explicit

style information, either through style tokens or calibrated parameters, which prevents themodels from

overreacting to transient, style-driven perturbations.

5.3.3. Example Trajectories
To evaluate the models under realistic traffic scenarios, two testing examples were selected: one repre-

senting high-speed and one low-speed traffic. These two examples were chosen to capture the broader
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Figure 5.8: Evolution of the position MAE error over time

macroscopic characteristics of real-world traffic collectively. Additionally, to ensure coverage of vari-

ousmicroscopic CF regimes—such as acceleration, deceleration, and cruising—the timewindow of each

testing case was set to 90 seconds. This duration ensures that the leader’s behavior is sufficiently rich,

thereby reducing potential bias in evaluation. Note that non-CF samples have been excluded before-

hand.

Several conclusions can be drawn from the experimental results:

1. As shown in Figure 5.9 and Figure 5.10 velocity diagrams, IDM responds to the leader without

delay, especially when the leader accelerates (see velocity panel in Figure 5.10 around 100 s for

an example). The result might be that IDM operates in a memoryless manner: each output is

generated based on the current time step alone. In contrast, both the Transformer and Style-

aware CFmodels can capture response delay, as they are trainedwith input and output sequences.

This allows them to extract the temporal characteristics of human reaction time embedded in the

data.

2. From Figure 5.9 and Figure 5.10 speed and spacing plots, it can be observed that all models are

capable of learning to react to the leader. This is evidenced by the consistency in the spacing

curves, which show synchronized responses to the leader’s actions. However, the difference lies

in personalized characteristics such as desired spacing (see slanted position plots) and preferred

speed, which vary across models.

3. Both IDM and the Style-aware CF are guided by driving style information: IDM is parameter-

ized with calibrated values representing average driver behavior, while the Style-aware CF uses

a learned style token as input. In essence, both capture the mean driving style from the training
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Figure 5.9: Trajectory comparison across models (Sample 200, slanted term: −17.5t)

set. However, IDM performs worse than the plain Transformer, but Style CF outperforms the

rest. This could be the result of the parameter space of IDM being limited compared to the style

token. Furthermore, IDM uses the uniform style, in other words, the same parameters across all

the samples, which could be biased to some trajectories.

4. The raw acceleration signals (Figure 5.9 and Figure 5.10) are inherently noisy. However, the final

converged models are able to produce smoothed acceleration profiles. This is attributed to the

design of the loss function as well as the Kalman filtering process, which reduces inconsistencies

in the data. The resulting smoothed acceleration curves are more consistent with natural human

driving behavior. In contrast, the LSTM model fails to eliminate this noise and exhibits more

volatile predictions. This behavior may imply a lack of convergence, which can be attributed to

the absence of explicit future context within the prediction window—an inherent limitation of the

LSTM architecture.

5.3.4. Attention Matrix
As is specified, the Transformermodelmaintains a certain interpretability, which is the attentionmech-

anism (FigureA.5). In the time series prediction task, the attentionmatrix revealswhich input timesteps,

from both the provided labels and the historical window, the model attends to when generating predic-

tions for each timestep within the prediction window. Inputs with higher attention weights contribute

more to the subsequent computations and ultimately have a greater influence on the predicted outputs.

Figure 5.11 illustrates attention maps from Transformer Layer 1, revealing how different modules
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Figure 5.10: Trajectory comparison across models (Sample 230, slanted term: −12.5t)

handle temporal and contextual information during trajectory prediction. The y-axis indicates query

positions—either the latter half of the prediction window (left and middle) or the full input (right). The

x-axis shows key positions, beginning with a style token followed by input time steps (1–6s).

The attention maps clarify distinct roles. In the decoder cross-attention (left), the prepended style

token is largely ignored for near-term queries (< 2 s) but is increasingly referenced at longer horizons

(after approximately 2.5 seconds along the query axis, where the leftmost column in the key series corre-

sponds to the prepended style token), where it provides complementary global guidance and supports

more stable long-term forecasting. Note that the upper-right region is masked to enforce causality.

Although the upper-triangular area appears brighter, data leakage is prevented, as explained in Ap-

pendix Causality and Masking.

In the decoder self-attention (middle), the pattern appears relatively diffuse rather than strictly

lower-triangular. This arises because causal masking allows each newly generated step to access pro-

gressively updated context within the prediction window. Consequently, brighter regions appear in the

lower-triangular area (key positions beyond 4 s), indicating the decoder’s use of newly available infor-

mation, while the darker upper-triangular region confirms that future inputs are effectively masked

and excluded from attention.

By contrast, the encoder self-attention (right) presents a pronounced autoregressive diagonal across

the entire historical window, highlighting its role in capturing strong temporal dependencies and faith-

fully propagating sequential information.

These patterns show that each attention module plays a distinct role: the encoder captures de-
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Figure 5.11: Attention matrix example (Sample 233, each timestep denotes 0.1 second)

terministic input dependencies, the decoder self-attention reflects fuzzy behavioral reactivity, and the

decoder cross-attention integrates global style information.

5.4. Conclusion
In this chapter, we presented the long-duration experimental setup and framework, along with its cor-

responding results. The motivation for adopting long-duration evaluation stems from the intended

application of the CF models in simulation environments, where long-duration performance is more

aligned with the requirements of CF tasks.

The experimental findings lead to the following conclusions:

The experimental results highlight several key findings. First, the attentionmechanism inTransformer-

basedmodels effectively captures weak autoregressive patterns in the decoder (Figure 5.11), supporting

the view that a follower’s behavior depends on temporally distributed cues rather than the leader’s state

at a single instant. This capacity allows Transformer models to learn reaction time characteristics, a

feature absent in memoryless models like IDM.

Second, the style token plays a critical role in the Style-aware CF, contributing prominently in the

cross-attention module and guiding behavior generation based on global driver characteristics.

Third, both the Style-aware CF demonstrates robustness to error accumulation over time, main-

taining stable performance despite recursive input noise. In contrast, the LSTM is more vulnerable to

such degradation, likely due to the lack of explicit style encoding. These models may overfit to short-

term fluctuations, mistaking local behavior for generalizable patterns.

Among all models evaluated, the Style-aware CF achieves the best overall performance in terms

of both accuracy and stability. Unlike IDM, which models reaction time as a fixed parameter, the

Style-aware CF learns it implicitly and adjusts for different driving styles. Unlike LSTM, it captures

context within the prediction window. And unlike the plain Transformer, it is grounded in a global

representation of driving style. This combination makes the Style-aware CF uniquely suited for robust

long-duration car-following prediction.
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6
Experiment Design

To address the final research question—Which driving styles, and which combinations thereof, con-

tribute to breakdown generation under given traffic conditions?—we now turn to Part II.

In Part I, we established a unified car-following model that embeds driving style and classified

driving style into four representative categories: stable vs. unstable and aggressive vs. timid. Building

on this classification and modeling framework, Part II investigates how these distinct driving styles,

individually and in combination, influence platoon dynamics and the emergence of traffic breakdown.

6.1. Experiment Framework
6.1.1. Overview
Building on the platoon-scale simulator—whichmodels an entire platoon rather than a single car-following

pair—we now outline the experimental pipeline.

Each experimental setup has two components: (i) the leading-vehicle trajectory and (ii) the platoon

composition. The leading-vehicle trajectory is treated as a control variable because it directly shapes

the dynamics of the entire platoon (e.g., sustained cruising at low or high speed, accelerations, or stop-

and-go patterns). The platoon composition is likewise influential: distinct driving styles and vehicle

types, as well as their ordering within the platoon, can yield markedly different collective responses.

1. Specify the setup. Define a platoon with vehicles drawn from distinct driving-style classes and

select a leading-vehicle trajectory recorded from real-world data.

2. Assemble the platoon. Randomly sample driving styles from the designated class set to form

the target platoon, and choose one leader trajectory that spans asmany traffic regimes as possible.

3. Run the simulation. Simulate for 4minutes (240 s) and record the full state/output.

50
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4. Evaluate and analyze. Compute the proposed metrics and analyze the outcomes to draw con-

clusions.

6.1.2. Platoon Simulation
The experiment builds on the style-transformer car-following model and its simulation (Algorithm 2).

A simple car-following setup is insufficient to address the research question. Instead, the framework

is extended to a platoon context, where the dynamics of the entire platoon are governed by the model.

The following simulation design serves this purpose:

Algorithm 2 Platoon Recursive Prediction with Sliding History

1: Inputs:

groundtruth dataDN×T , including position, velocity and acceleration

modelM

2: Params: Thist (history length), Tpred (prediction horizon), T (length of time series), number of

vehicle N

3: Output: Predicted platoon movements ŶN×T (including position, velocity and acceleration)

4: XN×T ← empty series ON×T ▷ Initialize a default training movement series

5: X2,1:Thist ← D2,1:Thist ▷ Initialize first follower’s history window

6: t0 ← Thist ▷ Initialize the start timestep

7: Initialize the head vehicle Ŷ1,: ← D1,:

8: for k = 1 to
⌊
(T − t0)/Tpred

⌋
do

9: for n = 2 to N do ▷ From head to tail vehicle

10: t← t0 + (k − 1)Tpred

11: D ← (Dn−1, t−Thist:t+Tpred , xn, t−Thist) ▷ Prepare input

12: Ŷn, t: t+Tpred ←M(D) ▷ Predict

13: Force positive velocity Ŷn, t: t+Tpred

14: Force no collision Ŷn, t: t+Tpred

15: Xn, t:t+Tpred ← Ŷn, t:t+Tpred ▷ Update history window

16: end for

17: end for

18: return Ŷ

There are 3 points worth noticing in the platoon simulation compared to the car-following simula-

tion:

1. The simulation operates in discrete time, where the state of every vehicle is updated at each

timestep.

2. Within each timestep, vehicles are updated sequentially from head to tail, ensuring that every

follower responds to the most recent state of its leader.

3. A collision-avoidance constraint is imposed to ensure that no two vehicles occupy the same spa-

tial position. In rare cases where the model prediction implies that a follower would bump into

its leader—an event scarcely represented in the training data—the vehicle is forcibly stopped by

setting its velocity to zero.
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Figure 6.1: Example Simulation Results: Two Diagrams on the Left (Passenger Vehicle Platoons) vs. Two on the Right (Truck

Platoons)

4. To complement this rule, a non-negativity constraint is applied on velocity. Specifically, whenever

the predicted velocity becomes negative, which may arise as a side-effect of the model attempting

to correct collisions, the value is reset to zero to prevent unrealistic backward motion.

To ensure the follow-up experiments are built on a well-rounded simulation environment, the fol-

lowing simulation examples (see Figure 6.1) are randomly drawn for visualization.

6.2. Metrics for Traffic Breakdown
Traffic breakdowns are often difficult to evaluate and quantify at themicroscopic level. Moreover, there

is no widely accepted standard for measuring their magnitude. Therefore, the metrics introduced here

aim to characterize one or multiple breakdowns from different perspectives.

The indicators employed in the experiments are summarized in Table 6.1.

Indicator Unit Significance

Test

Description

Delay [s] two-way

ANOVA

Time loss compared to benchmark (Newell model); cen-

tered across leader trajectories

ST [s] two-way

ANOVA

Total time in standstill regime (v < 1m/s), centered across

leader trajectories

FC [L/km] two-way

ANOVA

Fuel consumption per kilometer

wacc [km/h] t-test Propagation velocity of accelerating traffic waves, detected

via event-matching algorithm

wdec [km/h] t-test Propagation velocity of decelerating traffic waves, detected

via event-matching algorithm

qmax [veh/h] WLS t-test Capacity, inferred from fitted fundamental diagram

kjam [veh/km] WLS t-test Jam density, from congested branch intercept

kcrit [veh/km] WLS t-test Critical density, derived from triangular FD assumption

b [km/h] WLS t-test Slope of calibrated congested branch (absolute value gives

backward wave speed)

Table 6.1: Indicators employed in the platoon experiments (ANOVA: analysis of variance, WLS: weighted least squares)
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6.2.1. Trajectory-level Measures
Delay
Total time spent (TTS) is a widely used indicator in traffic engineering. However, it does not fully

capture the dynamics of traffic breakdown. To address this limitation, this study introduces the concept

of delay.

Delay is defined with respect to a benchmark scenario in which every vehicle in the platoon pre-

cisely replicates the leader’s trajectory according to Newell’s car-following model. Under this assump-

tion, a benchmark TTS can be computed. By comparing it with the actual TTS obtained from observed

trajectories, the difference reflects the additional time arising from deviations from ideal disturbance-

free propagation:

Delay = TTSactual − TTSbenchmark (6.1)

where

TTSactual = ∆t ·
N∑

n=1

K−1∑
k=0

1{xk
n<L},

TTSbenchmark = ∆t ·
N∑

n=1

K−1∑
k=0

1{x∗,k
n <L}.

(6.2)

Here xk
n is the actual position of vehicle n at time tk = k∆t (k = 0, . . . ,K − 1, K = T/∆t), and

x∗,k
n is the benchmark position fromNewell’s model, obtained as a time–space shifted copy of its leader.

The threshold L is determined as 500 meters before the last recorded position of the heading vehicle,

with 1{x<L} indicating whether a vehicle is in the area of interest. This boundary is selected to ensure

the travel time of each vehicle can be taken into account at the end of the simulation. For consistency,

the benchmark shift is set so that the leader’s benchmark and actual trajectories cross L at the same

time.

Total Time Spent in Standstill
Standstill indicates the severity of traffic breakdown by measuring how long vehicles are nearly immo-

bile. In this study, a standstill regime is defined as v < 1m/s and −0.1 < a < 0.1m/s2 (see Table 6.2).

The total standstill time (ST) is computed as

ST = ∆t ·
N∑

n=1

K−1∑
k=0

1{vk
n<1 m/s,}. (6.3)

Energy Efficiency
Beyond capacity loss and travel delays, traffic breakdown also has profound implications for energy ef-

ficiency. Stop-and-go patterns generated by breakdown events force vehicles into frequent acceleration

and deceleration, whichmarkedly increases fuel consumption. Such inefficiencies not only raise opera-

tional costs for drivers but also exacerbate environmental externalities at the system level. Examining

energy efficiency alongside breakdown dynamics therefore enables a more comprehensive evaluation

of traffic performance, linking operational stability with sustainability considerations.
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The VT-Micro model (Rakha et al., 2004) estimates instantaneous fuel consumption and emis-

sions as a function of a vehicle’s speed and acceleration, using log-transformed polynomial regression

calibrated with extensive chassis dynamometer data. The model distinguishes between positive and

negative acceleration regimes, which improves accuracy in capturing transient driving behaviors and

enables second-by-second fuel consumption estimation consistent with laboratory measurements.

With the calibrated coefficients, the model requires only vehicle speed and acceleration as inputs.

In this study, the model is directly applied using the parameter set provided in Zegeye et al. (2013),

whichwas calibrated on passenger vehicles and light trucks consistent with the vehicle types considered

here.

The fuel consumption is denoted as FC in this study, and the details of the method and its corre-

sponding parameter set can be found in the Appendix VT-Micro Fuel Consumption Estimation.

Significance Testing: Two-way ANOVA
To ensure a fair comparison of the indicator values across different experimental groups, the analy-

sis must account for the fact that each group was observed under varying leader movements. Since

the trajectory or motion pattern of the leading vehicle directly influences the follower’s dynamic re-

sponse, the observed differences in the indicator may partially stem from the leader-specific environ-

ment rather than intrinsic group characteristics. To disentangle these effects, a two-way analysis of

variance (ANOVA) without interaction terms is adopted.

The two-way ANOVA can be represented as a linear model under the treatment (reference) coding

scheme. Let ypℓi denote the response variable (e.g., delay or standstill time) for the i-th observation

(a single run of the simulation) within platoon p and leader environment ℓ. Each categorical factor is

encoded using dummy (indicator) variables to capture deviations from a chosen reference level. Specif-

ically, the model without interaction terms can be expressed as:

ypℓi = µ+
∑
p ̸=p0

αpDip +
∑
ℓ ̸=ℓ0

γℓDiℓ + εpℓi, (6.4)

where p0 and ℓ0 denote the reference platoon and the reference leader environment, respectively.

Dip andDiℓ are binary indicator variables such that

Dip =

1, if observation i belongs to platoon p,

0, otherwise,
Diℓ =

1, if observation i belongs toℓ,

0, otherwise.

Their inclusion allows the model to represent the mean deviation of each level relative to the chosen

reference.

Here, µ represents the mean response of the reference combination (i.e., the reference platoon

under the reference leader environment), αp denotes the mean difference between platoon p and the

reference platoon after controlling for leader effects, γℓ represents the deviation associated with leader

environment ℓ, and εpℓi is the residual error term, assumed to follow εpℓi ∼ N (0, σ2).

Under this formulation, each coefficient αp directly quantifies how the mean indicator value of

platoon pdiffers from that of the reference platoon, averaged across the same set of leader environments.
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Similarly, each γℓ captures the mean shift introduced by leader ℓ relative to the reference leader. The

corresponding t-tests for αp and γℓ therefore, evaluate the significance of platoon-specific and leader-

specific deviations, respectively, while maintaining a common linear modeling framework consistent

with the classical two-way ANOVA design.

6.2.2. Microscopic: Traffic Wave
Traffic waves, which propagate from downstream to upstream, serve as key indicators of traffic break-

down because they mark transitions between free-flow and congested states. The appearance of a de-

celerating wave signals the onset of congestion, whileana accelerating wave reflects the recovery from

low-speed states. In this study, these two wave types are analyzed separately, with decelerating waves

being particularly relevant for breakdown formation.

The primary variable of interest is the wave speed, defined as the upstream propagation velocity.

Wave speed has been shown to depend on driving characteristics, such as reaction time (Chen et al.,

2014). Other wave characteristics, such as duration, are not considered, since vehicle agents are trained

to maintain car-following behavior, ensuring that waves always propagate upstream to the last vehicle

without premature dissipation.

To identify waves and their speeds from trajectory data, we propose an automated detection algo-

rithm (see Algorithm 4 fothe r complete version), which operates in three steps:

1. Event detection: Each vehicle’s velocity series ṽi(t) is smoothed with a window Ws, and

regime-change events Ti (decelerating or accelerating) are identified as local extrema within a look-
around window Wℓ. These events can be identified by detecting whether the acceleration values lie

outside the threshold range after smoothing.

2. Pairwisematching: For each adjacent vehicle pair (i, i+1), follower events τi+1 arematched

to leader events τi whenever |τi+1 − τi| ≤ τmax. For matched events, the temporal lag, spatial gap, and

wave speed are computed as

∆t = τi+1 − τi, ∆x = xi+1(τi+1)− xi(τi), w = ∆x/∆t. (6.5)

3. Wave chaining: Valid pairwise matches are chained downstream from the head vehicle to

form complete wave sequences. A chain must span at least Lmin consecutive vehicles. The wave speed

is summarized as the median of the pairwise speeds c along the chain.

To this end, the algorithm can calculate the detected wave speeds with 2 categories – decelerating

wave speed wacc and accelerating wave speed wdec.

Significance Testing: t-test
To evaluate whether the average wave speed differs acrossmultiple experimental groups, pairwise com-

parisons are conducted using two-sample t-tests. One group is selected as the reference (baseline) con-

dition, and the mean wave speed of each remaining group is compared against this reference. This

approach allows for identifying which specific groups show statistically significant differences in wave

speed relative to the baseline. The t-test is chosen because it provides a simple and interpretable way to

quantifymean differenceswhilemaintaining statistical rigor under approximately normal and indepen-
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dent observations. Before applying the t-test, the normality of thewave speed distributions is examined,

as the data are collected under different leaders and may not strictly follow a normal distribution.

6.2.3. Macroscopic Variable Calibration
Derivation of Parameters in Fundamental Diagram
Macroscopic traffic variables, namely flow, density, and speed, are commonly used to characterize the

overall condition of a platoonwithin a specified time–space region. According to Edie’s definition (Edie,

1965), these variables can be consistently retrieved for any arbitrary region in the time–space plane.

To capture the dynamics of a moving platoon, parallelograms are adopted as the basic measure-

ment units. As illustrated in Figure 6.2a, parallelograms can cover the full vehicle trajectories while

minimizing the inclusion of void areas. This property ensures both representativeness and accuracy in

the measurement process. The detailed implementation of the parallelogram construction algorithm

is provided in the Appendix Automatic Construction of Parallelograms Along a Platoon.

(a) Generated parallelograms in time-space domain (b) Detected traffic waves in time-space domain (blue:

deceleration wave, green: acceleration wave)

Figure 6.2: Example of parallelogram generation and traffic wave detection in time-space domain (Sample 16)

By applying this approach, the flow, density, and speed of the platoon can be extracted as a time

series, where each element corresponds to the aggregated traffic variables derived from a single paral-

lelogram.

To examine the macroscopic traffic characteristics, the congested branch of the fundamental dia-

gram is approximated using a linear fit, which provides clearer insights than a simple scatter represen-

tation. A weighted least squares (WLS) regression is applied across experiments, where experiment

identifiers are incorporated as dummy variables, to obtain a robust estimate of the congested-branch

relationship for each experiment group:

q(k) = a+ bk (6.6)

with q denoting flow and k denoting density. The absolute slope |b| corresponds to the backward
wave speed w = −b, indicating the rate at which a disturbance propagates upstream.

Based on the triangular fundamental diagram assumption, the critical density can be directly in-

ferred from this fitted congested branch. The free-flow speed vf is obtained as the 90th percentile of the
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leading-vehicle speed, which provides a stable representation of the typical free-flow condition while

suppressing occasional extreme values or measurement noise. Given vf and the jam density kj = a/w

(the density where q(k) = 0), The critical density is calculated as

kcrit =
w kj

vf + w
=

a

vf + w
(6.7)

and the corresponding capacity follows as

qmax = vf kcrit (6.8)

This formulation avoids refitting a separate free-flow branch and allows direct style-wise compar-

isons of kcrit and qmax using the parameters a and b obtained from the robust congested-branch fit.

Significance Testing: WLS
To formally evaluate whether the slope of the congested branch of the fundamental diagram differs

across driving styles, a weighted least squares (WLS) regression model with platoon–density interac-

tions was employed.

This approach was chosen for three reasons. First, by including all four style groups within a single

model, we can conveniently specify a reference category and assess the pairwise differences in slopes

among the groups within a unified framework. Second, as discussed previously, the congested branch

of the fundamental diagram is well approximated by a linear function; hence, a least squares–based ap-

proach is appropriate for estimating the slope parameters. Third, inspection of the observed density–

flow scatter plots revealed that the data are not uniformly distributed: samples concentrate around the

critical density (kcrit), whereas observations at higher densities are sparse. If fitted without adjustment,

the regression would be overly influenced by the mid-density region and fail to capture the characteris-

tics of the high-density regime. Tomitigate this imbalance, we applied a weighting scheme that assigns

larger weights to under-represented (high-density) observations.

Weighting Strategy: Formally, each observation i was assigned a weight wi inversely propor-

tional to the local sampling frequency of density:

wi =
1

nb(ki)
,

where nb(ki) denotes the number of observations within the density bin b that contains ki. The weights

were subsequently normalized to have a unit mean, i.e.,

w∗
i =

wi

1
N

∑N
j=1 wj

,

so that the overall scale of the regression remains unchanged. This weighting strategy effectively re-

duces the dominance of the dense mid-range samples and ensures that the estimated slopes are not

biased toward regions with disproportionately frequent observations.

Model: Let qi denote the flow and ki the densitymeasured in parallelogram i (see Figure 6.2a), and

let Dis be dummy variables indicating the experiment s (s = 2, . . . , S, with platoon 1 as the reference

group). After centering density at its sample mean k0 to improve numerical stability, the model is

specified as

qi = β0 + β1(ki − k0) +

S∑
s=2

γsDis +

S∑
s=2

δs
[
(ki − k0)Dis

]
+ εi, (6.9)
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where εi is an error term. The coefficient β1 represents the slope of the congested branch for the refer-

ence platoon, while δs captures the difference in slope between experiments s and the reference group.

Pairwise t–tests on the model parameters are conducted to examine the differences in slopes across

platoons. For simplicity and clearer interpretation, all comparisons are made against a preselected

reference level, rather than performing all possible pairwise contrasts.

For each experiment s, the fitted parameters yield a group-specific linear relationship on the con-

gested branch based on the Equation 6.6:

q(k) = as + bsk (6.10)

where as and bs are obtained by back-transforming the centered coefficients:

as = (β0 − β1k0) + γs − δsk0, bs = β1 + δs. (6.11)

The backward wave speed is then ws = −bs. Assuming a triangular fundamental diagram, the jam
density is kj,s = as/ws and the critical density follows as

kcrit,s =
wskj,s

vf,s + ws
=

as
vf,s + ws

, (6.12)

where the free–flow speed vf,s is taken as the 90th percentile of the leading–vehicle speed in ex-

periment s (fixed to 50.4 km/h), providing a robust representation of typical free-flow conditions. Con-

fidence intervals for kcrit,s, qmax,s and for pairwise differences between styles are obtained by nonpara-

metric bootstrap resampling of the parallelogram observations.

6.3. Experiment setup
6.3.1. Data Used
The data used in Part II consists of trajectories from the Zen-traffic dataset (see Figure 1.1 for the con-

cept). These trajectories serve as the leader vehicle, guiding the movements of the entire platoon. Con-

currently, the style embeddings and their associated cluster information, derived in the previous sec-

tion, are provided as inputs to the style-aware CF model, ensuring that agents drive according to the

desired styles.

Leaders Trajectory Profile
The movements of the leading vehicle largely determine the dynamics of the entire platoon. Hence, it

is essential to examine the proportion of different movement regimes within the collected trajectories.

In this dataset, each trajectory spans four minutes, providing sufficient simulation time for a traffic

breakdown to emerge.

Vehicle movements are categorized into 8 regimes (see Table 6.2). Some regimes, such as cruising

and mild acceleration, have little impact on platoon stability, whereas others, such as sharp decelera-

tion, can significantly disturb it.

Figure 6.3 illustrates an example trajectory segmented into regimes according to the taxonomy in

Table 6.2, using the PRAVT algorithm (Sharma et al., 2018) developed for car-following regime seg-

mentation.
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Regime

Acceleration Deceleration

Cruise Stand.Mild Moderate Sharp Mild Moderate Sharp

Code A Am As D Dm Ds C S

a(m/s2) [0.1, 0.7] [0.7, 1.5] (1.5,∞) [−0.7,−0.1] [−1.5,−0.7] (−∞,−1.5] [−0.1, 0.1]

v(m/s) - - - - - - v > 1 (0, 1]

Table 6.2: Regime definitions, thresholds, and codes (Stand. = Standstill)

Figure 6.3: An example of the regime segmentation for one trajectory

Accordingly, 10 samples were selected, each with a duration of 240 seconds, to serve as the ex-

perimental dataset. As summarized in Table 6.3, the dataset spans all regimes, thereby capturing the

full range of traffic conditions. In particular, the proportion of mild deceleration (31.15%) ensures that

the leading vehicle is capable of inducing the intended traffic breakdown. Moreover, the dataset also

contains extreme cases of strong acceleration (6.38%) and deceleration (6.45%), which, in line with the

study’s objectives, are expected to trigger larger disturbances within the platoon.

Table 6.3: Time share of different regimes

A D C Dm Am As Ds S

Duration (s) 774.72 747.71 563.93 146.96 134.06 18.91 8.00 5.70

Share (%) 32.28 31.15 23.50 6.12 5.59 0.79 0.33 0.24

Style Profile
The classification results are presented in subsection 5.1.2. Specifically, Table 5.1 shows the style clas-

sification result, and Table 5.2 provides a descriptive interpretation of each cluster. These tables sum-

marize both the detailed car-following characteristics and their qualitative meanings. Each passenger

car–leading group contains at least 400 samples, while each truck-leading group includes around 150

samples, both of which constitute sufficiently large pools for subsequent sampling and analysis.

Building on these classification results, the experiments draw random samples from the relevant

style groups at each repetition (see Table 6.4), thereby ensuring that the heterogeneity within each style

group is preserved.

6.3.2. Experiments
This experiment investigates how driving style influences traffic breakdown in platoons under car-

following conditions. Because the number of possible style permutations grows combinatorially, we

restrict attention to a set of practically relevant platoon compositions and design the following experi-
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ments accordingly.

The tested setups are summarized in Table 6.4. In total, three main experiments were designed,

each addressing a specific research question. Within eachmain experiment, a series of sub-experiments

were conducted to explore related aspects of the question. For example, Experiment 1 is divided into

four sub-experiments. Each sub-experiment includes five simulations performedunder the same leading-

vehicle profile, and in total, ten different leading-vehicle profiles are tested. In other words, 50 simu-

lations are conducted in Experiment 1-a. Note that both the simulations and the sub-experiments are

independent and do not interfere with one another. Once a simulation is completed, the simulation

environment is reset before running the next one.

Notations used in the Table 6.4 require additional clarification:

1. T1 denotes a truck agent that follows style group 1 but with a vehicle length of 9 meters, whereas

P1 follows the same style groupbutwith a length of 5meters. Note thatT andP donot correspond

to any particular driving style; they are randomly assigned in each simulation run.

2. [· · · ] denotes an ordered list, whereas {· · · } denotes an unordered set that only specifies the pro-
portion of styles.

3. Subscripts indicate the number of elements in the list. For example, [P1, P1, · · · ]16 represents a
list of 16 vehicles.

4. P1(25%) indicates that 25% of the vehicles in the platoon belong to style P1.

Experiment 1
In a style-homogeneous platoon, what is the impact on potential traffic disturbances?

Existing studies often classify driving styles into two broad categories—aggressive and timid (Laval

and Leclercq, 2010). This dichotomy is also reflected in the clustering results presented earlier (see

Section Interpretation: Cluster Profile). A key question, therefore, is whether timid drivers destabilize

traffic more than their aggressive counterparts. The experiments conducted in this study are designed

to shed light on this issue.

Moreover, the clustering results indicate that driving styles extend beyond the simple aggressive–

timid division (see Table 5.2). To capture these additional behavioral groups, the experiments are orga-

nized around homogeneous platoon compositions, enabling a systematic examination of their distinct

traffic impacts.

Experiment 2
Is an alternating composition more efficient than a homogeneous composition?

In real-world traffic, driving styles are often more complex and stochastic than a simple homoge-

neous setting. In this experiment, we investigatemixed driving style compositions under two scenarios:

an alternating arrangement and a homogeneous arrangement. The findings fromExperiment 1 indicate

that aggressive drivers generate faster traffic waves but experience shorter standstill times, whereas

conservative drivers produce slower waves yet longer standstill durations. Hence, it is of interest to

examine the performance of platoons composed of both styles.
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To extend the analysis, all six alternating style pairs were tested, given the four styles P1–P4.

Among them, the alternating composition of P1 and P3 yielded the most favorable delay performance,

outperforming not only the other alternating pairs but also the homogeneous compositions in Experi-

ment 1. Motivated by this result, an additional experiment was conducted to examine mixed platoons

with varying proportions of P1 and P3 drivers (25%, 50%, and 75%, respectively).

Experiment 3
How does truck placement affect platoon efficiency?

Trucks are of particular interest in traffic engineering, yet most existing car-following models

(Zhou et al., 2017; Huang et al., 2018) fail to account for passenger cars and trucks jointly. Building

on the style-transformer model, this experiment examines the impact of trucks within passenger-car

platoons.

A key question concerns the distribution of trucks: on motorways, they are often observed either

clustered together within a platoon of passenger cars or dispersed individually throughout the flow.

This experiment investigates which distribution pattern—clustered or dispersed—yields greater traffic

efficiency.

In Experiment 3, our experiments show that when platoon size is fixed, positioning the truck group

at the tail of the platoon yields the lowest overall delay, because the trucks exert minimal influence on

the passenger cars ahead. However, such an ideal arrangement rarely occurs in real traffic. To explore

more practical scenarios, we compared clustered (3-e and 3-f), alternating (3-g), and random (3-h)

truck allocations.
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Table 6.4: Experiment set-up summary (Follow-up exp. is for acquiring more indicator samples to achieve statistical

significance.)

Experiment Composition Category

Iteration

(Repetitions × Leaders)

1-a [P1, P1 · · · ]16 aggressive and stable 15 × 10
1-b [P2, P2 · · · ]16 timid but unstable 15 × 10
1-c [P3, P3 · · · ]16 timid and stable 15 × 10
1-d [P4, P4 · · · ]16 aggressive but unstable 15 × 10

2-a [P1, P2, P1, P2, . . . ]16 mixed stability 15 × 10
2-b [P1, P3, P1, P3 · · · ]16 stable 15 × 10
2-c [P1, P4, P1, P4 · · · ]16 mixed stability 15 × 10
2-d [P2, P3, P2, P3 · · · ]16 mixed stability 15 × 10
2-e [P2, P4, P2, P4 · · · ]16 unstable 15 × 10
2-f [P3, P4, P3, P4 · · · ]16 mixed stability 15 × 10

2-b-1 {P1(25%), P3(75%)}16 stable (P3 biased) 15 × 10
2-b-2 {P1(50%), P3(50%)}16 stable (balanced) 15 × 10
2-b-3 {P1(75%), P3(25%)}16 stable (P1 biased) 15 × 10

3-a [T1, T1 · · · ]16 aggressive and stable 15 × 10
3-b [T2, T2 · · · ]16 timid but unstable 15 × 10
3-c [T3, T3 · · · ]16 timid and stable 15 × 10
3-d [T4, T4 · · · ]16 aggressive but unstable 15 × 10
3-e [P, · · · ]4[T, · · · ]4[P, · · · ]4 clustered trucks at center 15 × 10
3-f [T, T · · · ]8[P, P · · · ]8 clustered trucks as leader 15 × 10
3-g [T, P, T, P · · · ]16 alternating 15 × 10
3-h {T (50%), P (50%)}16 random 15 × 10
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Experiment Result

7.1. Experiment 1 - Style Homogeneous Platoon
Platoons composed of different driving styles may induce traffic breakdown in distinct ways. Four

major style groups, identified in Table 5.2, are examined in this experiment.

7.1.1. Trajectory-level Measures
Delay serves as a general indicator to assess whether a particular platoon composition outperforms oth-

ers. Although it overlooks many details of traffic breakdown, such as wave speed, it provides a holistic

view of overall platoon performance. Similarly, a standstill is a common feature of traffic breakdown

and, to some extent, reflects the severity of congestion.

Table 7.1: Difference of indicators compared to the reference level (1-c), * indicates the difference compared to the reference

level (in bold text) significant (p < 0.001)

Experiment |wdec| (m/s) |wacc|(m/s) ST (s) Delay (s) FC (L/km)

t-test WLS + t-test

1-a +0.55* +0.56* -26* +11* -0.48*

1-b +0.51* +0.22* +77* +45* +0.43*

1-c 5.68 5.29 228 835 0.69

1-d +1.01* +1.05* +38* +41* -0.45*

Table 7.1 reports the results on delay and standstill time, andwave speeds (in absolute value). Over-

all, Group 1-a (aggressive–stable) andGroup 1-d (aggressive–unstable) exhibit fasterwave propagation,

with both decelerating and accelerating occurring quickly. Consequently, their standstill durations

are relatively short, suggesting that although breakdowns emerge rapidly, they also dissipate quickly,

which can be beneficial for overall platoon performance. By contrast, the conservative–unstable style

63
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(Group 1-b) generates slower wave propagation and a smaller spatial extent of disturbance, but at the

cost of substantially longer standstills and higher congestion impact.

From the perspective of centered delay, shorter standstill times for aggressive groups do not nec-

essarily imply superior performance. Instead, the conservative–stable platoon (Group 1-c) achieves

the lowest delay, a result that is statistically significant compared with the other groups. This finding

suggests that while stable conservative drivers may induce longer standstills, the overall severity of

breakdown is mitigated.

In terms of fuel consumption, generally the conservative driving style groups (b and c) consume

more fuel than the aggressive, which might indicate such a driving style ends up with more time in

low-speed gliding, leading to high fuel consumption but stabilizing the traffic.

Meanwhile, group 1-c and 1-d stand out from the rest groups. The 1-c platoon shows a stable but

slow-reacting pattern with long stops and extended low-speed gliding, which prolongs operation in

energy inefficient regimes and leads to the highest fuel consumption per distance despite the lowest

overall delay.

In contrast, the 1-d follows a stop–go pattern with rapid accelerations and decelerations. Despite

a relatively high standstill time (v < 1 m/s), it minimizes low-speed crawling and quickly returns to

efficient cruising, showing that high ST does not necessarily imply high FC; by reducing low-speed

operation and increasing efficient cruising, 1-d achieves lower fuel consumption per distance.

7.1.2. Detected Traffic Wave
Traffic waves generated by the four driving styles exhibit substantial differences, highlighting the need

to further examine their characteristics. Since traffic waves play a pivotal role in the onset and de-

velopment of congestion, their analysis can provide critical insights into the behavioral properties of

platoons.

It is important to clarify that the traffic waves considered in this section differ from those in the

fundamental diagram. In the latter, wave speed is typically calibrated using macroscopic quantities,

whereas in this study, the waves are empirically detected and subjected to statistical testing. Moreover,

the detected waves can be categorized into accelerating and decelerating waves, a distinction that is

essential for understanding the propagation dynamics of traffic breakdown.

Figure 7.1 illustrates the accelerating and decelerating wave speeds, together with their 95% con-

fidence intervals obtained through bootstrapping. The corresponding numerical values of the wave

speeds (in absolute value) are reported in Table 7.1.

The scatter of mean accelerating vs. decelerating wave speeds (m/s, with 95% CIs) yields three

consistent findings. First, the relationship is nearly symmetric: points cluster around the reference

line y=x, and most lie slightly below it, indicating that accelerating waves tend to be marginally faster

in magnitude than decelerating waves (asymmetry on the order of a few tenths km/h).

Second, styles differ systematically in wave–speedmagnitude. Group 1-d exhibits the largest wave

speeds among all groups and is clearly separated from the others, a pattern consistentwith anaggressive–

unstable style; by contrast, Group 1-c shows the smallest magnitudes, aligning with a conservative–
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Figure 7.1: Wave speed comparison (Margins indicate the 95% CI.)

Table 7.2: Fundamental-diagram parameters estimated fromWLS (reference = 1-c). Significance indicates difference from

the reference group( * denotes p < 0.001).

Exp. a b kjam kcrit qmax

(veh/hr) (km/hr) (veh/km) (veh/km) (veh/hr)

WLS + t-test Bootstrap difference testing

1-a 1493.38* -24.34* 61.36* 19.06* 1029.40*

1-b 1294.70 -18.73 69.11 17.80 961.25

1-c 1393.23 -19.52 71.37 18.95 1023.31

1-d 1412.90* -23.62* 59.82* 18.20* 982.94*

stable style.

Third, Group 1-b appears most fragile: its point and 95% CI approach (and may intersect) the line

y=x, implying a nontrivial probability that the accelerating wave becomes slower than the decelerating

wave; such an inversion suggests a higher propensity for deeper or more persistent breakdown relative

to the other styles.

7.1.3. Macroscopic Traffic Variables
Macroscopic traffic variables offer an additional perspective on the simulation outcomes. This section

presents the calibration of the fundamental diagram and the associated traffic variables, which serve

as the basis for analyzing the differences across driving styles.

The analysis of the fundamental diagram parameters (Table 7.2 and Figure 7.2) suggests several

conclusions. Note that the analysis is only carried out between the groups with a significant difference.

First, differences inwave speedprimarily reflect drivers’ reaction characteristics: faster-responding

drivers (Group 1-a andGroup 1-d) are associated with steeper wave speeds, whereas slower-responding
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Figure 7.2: Calibrated Fundamental Diagrams (Congested Branch)

drivers (Group 1-b andGroup 1-c) correspond to gentler slopes. Again, this result alignswith the finding

in Section Detected Traffic Wave.

Second, the jam density reveals the platoon’s compression capacity under congestion: defensive

drivers (Group 1-c) can sustain the highest density, while unstable drivers (Group 1-d) lead to the spars-

est conditions.

Third, the maximum flow is shaped by the trade-off between efficiency and stability. Group 1-a

achieves the highest flow due to efficient car-following, Group 1-b yields the lowest flow because of

hesitation and variability, Group 1-c maintains a moderate flow supported by cautious but consistent

behavior, and Group 1-d’s instability offsets the benefit of quick reactions.

Finally, at the capacity point, platoons composed of more stable drivers (Group 1-a and Group 1-c)

are less prone to breakdown, because their critical densities are significantly higher than the unstable

groups. This can be attributed to their lower variance in reaction time and headway over time, which

helps sustain persistent driving patterns in homogeneous platoons. This conclusion could be applied

in regulating traffic flow during high-volume periods, when traffic flow is unstable.

7.2. Experiment 2 - Mixing or Homogeneous Patterns
Experiment 1 revealed that the conservative–stable platoon delivered the best overall performance in

terms of delay. Two additional insights emerged: (i) conservative drivers tend to generate larger break-

down areas than aggressive drivers, primarily due to their lower wave speeds; (ii) although breakdowns

caused by aggressive drivers are usually shorter and less frequent, their higher magnitude often results

in greater delays, usually accompanied by higher fuel consumption.
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Motivated by these findings, Experiment 2 shifts the focus from homogeneous platoons to mixed

compositions of two distinct driving styles. The objective is to test whether certain combinations can

achieve even better performance. The investigation begins with alternating patterns, where two styles

are interleaved throughout the platoon (yielding 6 possible style pairs). After identifying the most ef-

fective style pair, proportion tests are conducted to determine whether specific ratios outperform both

homogeneous and alternating configurations.

Trajectory-level Indicators
Following the statistical testing procedure, Table 7.3 summarizes the results. TheANOVAconfirms that

each indicator shows a significant effect, and the subsequent HSD test is applied to identify pairwise

differences of interest.

It should be noted that the data of Experiment 1 reported in Table 7.3 differ from the raw delay

values presented in Table 7.1. This adjustment arises because, in Experiment 2, the data are obtained

from 15× 10 iterations (repetitions × leaders).

Table 7.3: Wave speed, standstill time, and delay for each platoon composition (* denotes the difference is significant

(p < 0.001) compared to the reference level 2-b))

Experiment Composition |wdec|
(m/s)

|wacc|
(m/s)

Standstill

(s)

Delay

(s)

FC

(L/km)

t-test WLS + t-test

2-a [P1, P2, P1, P2, . . . ]16 +0.20* +0.28* +44* +23* +0.24*

2-b [P1, P3, P1, P3, . . . ]16 5.51 5.61 321.9 492.0 0.98

2-b-1 {P1(25%), P3(75%)}16 -0.20* -0.17* +17* -4 +0.45*

2-b-2 {P1(50%), P3(50%)}16 -0.09 +0.02 -3 -2 +0.02

2-b-3 {P1(75%), P3(25%)}16 +0.06 +0.11 -19* +1 -0.31*

2-c [P1, P4, P1, P4, . . . ]16 +0.38* +0.49* +6 +20* -0.35*

2-d [P2, P3, P2, P3, . . . ]16 -0.07 -0.10 +71* +10* +1.19*

2-e [P2, P4, P2, P4, . . . ]16 +0.31* +0.40* +81* +32* +0.69*

2-f [P3, P4, P3, P4, . . . ]16 +0.09 +0.19* +40* +16* +0.41*

1-a [P1, P1, . . . ]16 +0.21* +0.24* -39* +1 -0.55*

1-b [P2, P2, . . . ]16 +0.17 -0.09 +129* +35* +1.86*

1-c [P3, P3, . . . ]16 -0.34* -0.32* +29* -10* +0.86*

1-d [P4, P4, . . . ]16 +0.67* +0.73* +43* +31* -0.03

The results in Table 7.3 provides the following observations:

• Experiment set 2-b-x shows that the presence of P3 drivers has a stabilizing effect on traffic re-

covery. A higher proportion of P3 substantially reduces delay.

• In contrast, the inclusion of P2 drivers proves detrimental. Pure P2 or P2-dominated composi-

tions (e.g., 2-d and 2-e) exhibit markedly longer delays and extended standstill durations.

• A longer standstill time does not necessarily imply greater delay (see experiments 2-b-x), as pla-

toons with more conservative drivers (e.g., P3) may experience extended standstill yet achieve

faster overall recovery due to their stabilizing effect.
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In otherwords, the findings emphasize three key points: (i) P3 serves as a stabilizer, effectivelymit-

igating congestion; (ii) P2 operates as adrag, slowingdown recovery; and (iii) heterogeneous platoons—

especially those mixing P1 and P3—do not substantially outperform their homogeneous counterparts.

It is also worth noting that the relationship between the proportion of P3 drivers and delay reduc-

tion is not strictly linear. While increasing the share of P3 generally improves efficiency, the marginal

benefit becomes more pronounced once the proportion exceeds 75%.

Considering Energy Use
Beyond delay and wave dynamics, fuel consumption (FC) reveals an important trade-off. Although P3

is consistently identified as a stabilizer, its FC is notably higher. As shown in the proportion experi-

ments (2-b-x), increasing the share of P3 yields a substantial reduction in delay, yet once the proportion

of P3 exceeds 50%, FC rises sharply. This effect can be attributed to P3’s tendency to remain in low-

speed operating regimes, which increases energy use.

By contrast, P1 exhibits the most favorable performance in terms of FC. In the P1–P3 mixed pla-

toons (2-b-x), when the share of P3 remains at or below 50%, the differences in FC are not statistically

significant. This suggests that combining the two stable styles—P1 and P3—while keeping the propor-

tion of P3 moderate, can strike a balance between minimizing delay and controlling fuel consumption.

7.3. Experiment 3 - Impact of Truck in Platoon
7.3.1. Profiles
Before entering the patterns of truck allocation in a platoon, it is useful to first investigate their homoge-

neous profiles, which can provide insights into the subsequent experiments. Therefore, as an additional

setup, 3 homogeneous platoons are designed, each composed exclusively of one of the 3 different styles

where a truck is the leader (see Table 5.2).

It is worth noting that the style transformer model allows the vehicle length to be specified, such

that an agent behaves as a truck when its length is set to a larger value (9 meters in this study), which is

denoted as ”T”, compared to the ”P”, which denotes the passenger car agents. See Table 5.2 for details.

Characteristics of Truck Platoon
Table 7.4: Difference of indicators compared to reference level (reference group: 3-a, * denotes the difference is significant

(p < 0.01) compared to the reference level)

Experiment Composition wdec

(m/s)

wacc

(m/s)

Standstill

(s)

Delay

(s)

FC

(L/km)

t-test WLS + t-test

3-a [T1, T1 · · · ]16 6.12 5.11 21 9 3.22

3-b [T2, T2 · · · ]16 +0.13* +0.15* -38* +1 -0.84*

3-c [T3, T3 · · · ]16 +0.14* +0.12 -41* -19* -0.69*

3-d [T4, T4 · · · ]16 +0.05 -0.05 -7* -16* +0.13*

Generally, the Figure 7.3 illustrates the main findings. Homogeneous truck platoons exhibit a

larger discrepancy between decelerating and accelerating wave speeds compared to passenger-car pla-

toons, indicating that congestion propagates more rapidly upstream while dissipating more slowly at
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Figure 7.3: Wave speed comparison (Margins indicate the 95% CI.)

the breakdown front. Furthermore, their accelerating wave speeds are significantly lower than those

of passenger cars, as trucks typically restart more slowly. In contrast, the decelerating wave speeds of

truck platoons are overall slightly faster than those of passenger cars, which can be explained by the fact

that, although trucks have inferior braking performance, truck drivers often benefit from higher van-

tage points and professional training, enabling them to anticipate traffic conditions and react earlier.

This results in traffic waves that propagate somewhat faster in truck platoons.

Meanwhile, Table 7.4 reveals their characteristics from another angle. T4’s fast but unstable re-

actions and short gaps trigger longer full stops, whereas T3’s conservative spacing and early braking

absorb disturbances and keep the standstill brief. T1 maintains tight yet steady following, yielding a

moderate standstill, and T2 balances caution and responsiveness, falling between T1 and T3.

Table 7.4 shows that the earlier conclusion remains valid for truck agents: a conservative driving

style is preferable, as it results in the lowest delay among all styles. The delay suggests that, when

operating in clusters, adopting a stable conservative driving strategy (T3), such as a higher but stable

time headway, can help reduce the overall delay in truck platoons.

The fuel consumption is overall higher in truck platoons than in passenger car platoons. Among

them, the least-delay group 3-c exhibits the highest fuel consumption, which again indicates that the

stable conservative group spends more time in the low-speed regime, thereby incurring greater energy

consumption.

7.3.2. Impact of Truck Placement: Clustered or Dispersed
This experiment investigates the impact of truck allocation within a platoon. As summarized in Ta-

ble 6.4, three allocation patterns (3-e, 3-f, 3-g, 3-h) are tested to simulate the influence of trucks on

single-lane traffic.

The findings Table 7.5 indicate that clustering trucks within a platoon is a configuration with both
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potential benefits and significant risks. On the one hand, clustered formations can reduce delays under

certain conditions; for instance, in our 16-vehicle experiments, placing the truck cluster in the middle

of the platoon (3-e) resulted in relatively favorable delay consumption outcomes compared to alternat-

ing formations. However, this advantage comes with a critical limitation: the efficiency of clustering

strongly depends on the exact position of the cluster (e.g., compare 3-e and 3-f). In real traffic, where

truck positions cannot be precisely controlled, such benefits may not be consistently realized. Besides,

the 3-e platoon exhibits the highest fuel consumption, likely because it remains trapped in the low-

speed regime for extended periods.

On the other hand, clustering substantially increases the standstill time of the platoon

relative to dispersed arrangements. This poses a serious safety concern, as longer standstill times

imply that congestion may propagate further upstream and persist for longer durations. In single-lane

traffic, therefore, clustered trucks should avoid being trapped in passenger-car-dense regions, since

this could amplify breakdowns and delays rather than mitigate them.

By contrast, dispersed formations generally produce more resilient traffic dynamics.

Although their delay performance is not as favorable as in 3-e, the lower standstill times indicate that

breakdowns are less severe and recovery occursmore quickly. Considering that alternating patterns are

relatively unsafe, the most practical and robust strategy for trucks—particularly under high-demand,

single-lane conditions—is to remain randomly distributed across the platoon.

At the macroscopic level, however, when the overall proportion of trucks is fixed, no statistically

significant differences are observed in the estimated fundamental diagram parameters (e.g., a, b, and

kcrit) across allocation patterns. This indicates that macroscopic traffic characteristics and wave propa-

gation are primarily determined by the truck proportion itself, rather than by the specific arrangement

of trucks within the platoon.

Table 7.5: Difference of indicators compared to the reference level (reference group: 3-e, * denotes the difference is significant

(p < 0.01) compared to the reference level)

Experiment Composition |wdec| |wacc| ST Delay FC

(m/s) (m/s) (s) (s) (L/km)

t-test WLS + t-test

3-e (clustered) [P · · · ]4[T · · · ]8[P · · · ]4 6.0 5.4 442 632 4.25

3-f (clustered) [T, T · · · ]8[P, P · · · ]8 +0.05 +0.13* +21* +65* -0.64*

3-g (dispersed) [T, P, T, P · · · ]16 -0.15* +0.12 -35* +9* -1.08*

3-h (dispersed) {T (50%), P (50%)}16 -0.11* +0.08 -43* +0 -1.20*

7.4. Conclusion
In experiment 1, the following conclusions are drawn:

1. Aggressive drivers generate higher wave speeds (both starting and stopping), whereas conserva-

tive drivers produce slower waves. This implies that breakdowns induced by aggressive drivers

extend farther in space but persist for shorter durations, and vice versa.
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2. Stable drivers—whether aggressive or conservative—result in less delay, with the conservative–

stable platoon performing best overall.

3. Aggressive drivers generally use less fuel than conservative drivers, suggesting that conservative

drivers spend longer periods gliding at low speeds, thereby operating in less efficient conditions.

4. Starting waves are generally faster than stopping waves; however, unstable platoons face the risk

of inversion, leading to more severe breakdowns.

5. Fundamental diagramanalysis confirms style-dependent differences: stable groups are less prone

to breakdown at capacity, owing to their higher critical density.

Based on the revealed driving styles, the following conclusions are drawn for experiment 2:

1. P3 drivers act as a stabilizer: the more P3 drivers in the platoon, the more favorable the impact

on traffic flow. The reduction in delay is not strictly linear—once the proportion of P3 exceeds

50%, the decrease in delay becomes particularly significant. However, P3 also shows the poorest

performance in terms of fuel consumption (FC), as its driving style tends to remain in low-speed

regimes. Therefore, while P3 contributes to stability, its share in the platoon must be carefully

considered.

2. P2 drivers act as a drag: as an unstable driving style, their presence prolongs standstill periods

and substantially increases delay, making P2-dominated platoons the least efficient configura-

tions.

3. P1 drivers exhibit the most favorable fuel efficiency. Consequently, a balanced mixture of P1 and

P3—while keeping the share of P3 at or below 50%—offers a practical compromise, achieving

congestion mitigation through stability while avoiding excessive fuel consumption.

Lastly, the following findings are revealed regarding the influence of trucks:

1. Generally, truck platoons generate faster decelerating than accelerating waves, causing conges-

tion to extend further in both time and space and making breakdowns more difficult to dissipate

compared with passenger-car platoons. Nevertheless, a stable and conservative driving style (T3)

is recommended for homogeneous truck platoons, as it contributes to maintaining platoon stabil-

ity.

2. Clustering trucks is a double-edged sword: while it can reduce delays if positioned favorably, it

also leads to longer standstill times and greater fragility, making its benefits unreliable under

realistic traffic conditions. This pattern is therefore more suitable under low traffic volumes. By

contrast, dispersed trucks producemore resilient dynamics during breakdowns and recovermore

quickly, making this arrangement preferable in high-volume traffic.
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Conclusion

8.1. Part I Conclusion
This part presents a data-driven framework for modeling car-following (CF) behavior, incorporating

driving style as a latent, time-independent factor. A clean and consistent dataset is first constructed

through preprocessing steps, including segmentation, Kalman filtering, and the removal of invalid CF

samples, to ensure high-quality learning input.

A Transformer-based style embedding model is then proposed to extract latent behavioral repre-

sentations from vehicle trajectories. The embeddings are trained jointly with the CF model, ensuring

functional relevance and behavioral consistency. Clustering and interpretation of these embeddings

reveal their alignment with meaningful driving features such as average time headway, reaction time,

and behavioral variability.

To evaluate model generalization beyond short-term prediction, a long-term recursive prediction

framework is introduced. While all models are trained on short prediction windows, their performance

is assessed over extended horizons. This long-term setup reveals the compounding nature of prediction

errors, providing a more rigorous test of model robustness. The Style-aware CF outperforms baseline

models—IDM, LSTM, and plain Transformer—achieving superior accuracy and stability over time. Its

improved performance is attributed to the incorporation of style embeddings.

Furthermore, the learned embedding space is validated through crossover experiments, which

demonstrate that altering the style token alone could systematically modulate car-following behavior.

Moreover, the findings support the view that driving style lies on a continuous spectrum, rather than

fitting into discrete categories such as aggressive versus conservative, as no clear boundaries between

the styles are observed.

Overall, this framework integrates domain knowledge with neuralmodeling to achieve both perfor-

mance and interpretability. It provides a foundation for simulating the impact of driver heterogeneity
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on traffic dynamics—an issue explored in the following part.

8.2. Part II Conclusion
This part builds on the style-aware car-following model and its extension to platoon-scale simulation

to investigate traffic breakdownmechanisms. A series of experiments are designed with controlled pla-

toon compositions and truck allocations, and their outcomes are evaluated using a set of microscopic

indicators (delay, standstill time, wave speed) and macroscopic indicators (fundamental diagram cali-

bration). Together, this methodological framework provides a unified and statistically robust approach

to linking microscopic driver heterogeneity with macroscopic traffic flow dynamics.

Experiment 1 shows that differences in driving style fundamentally shape wave propagation and

congestion dynamics. Drivers with more aggressive tendencies generate faster waves, causing conges-

tion to spread further in space but to dissipate more quickly, whereas more conservative tendencies

produce slower waves that persist longer. Stability emerges as the decisive factor: stable groups con-

sistently lead to lower delays, with conservative–stable groups performing best overall. Yet this benefit

comes at the expense of fuel efficiency, since conservative drivers tend to spend extended periods glid-

ing at low speeds. Moreover, startingwaves are generally faster than stoppingwaves, although unstable

platoons risk wave inversion, which aggravates breakdowns.

Experiment 2 reveals a critical trade-off between stability and energy use. A higher proportion of

stabilizing drivers reduces delays substantially, and the effect becomes particularly pronounced once

their share surpasses half of the platoon. However, this comes with significantly higher fuel consump-

tion, as stabilizing behavior often results in prolonged low-speed operation. By contrast, fuel-efficient

drivers achieve the lowest energy use but provide less stability. Mixing the two styles offers a practi-

cal compromise: when the stabilizing type is kept at a moderate proportion, the platoon achieves both

reduced delays and controlled fuel consumption.

Experiment 3 highlights the distinctive role of heavy vehicles. Compared with passenger-car pla-

toons, truck groups tend to generate faster decelerating than accelerating waves, which makes conges-

tion spread farther and persist longer. Nevertheless, a stable and conservative driving pattern remains

beneficial for homogeneous truck platoons, helping to sustain overall stability. The spatial distribution

of trucks within a mixed platoon also matters: clustering trucks can occasionally reduce delays but

increases fragility and standstill times, making this arrangement less reliable under dense traffic. By

contrast, dispersing trucks across the platoon enhances resilience and leads to faster recovery, offering

a more robust strategy in high-volume conditions.

8.3. Contribution
Scientific
From a scientific perspective, this thesis demonstrates how microscopic heterogeneity in driver behav-

ior systematically shapesmacroscopic traffic outcomes. By embedding driving style into a car-following

model and scaling up to controlled platoon experiments, it becomes possible to link behavioral traits

to measurable effects such as delay, wave speed, standstill duration, and fuel consumption.

The results highlight three general mechanisms: (i) stability: stable and cautious behavior acts
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as a buffer against congestion, mitigating the formation and amplification of traffic waves. However,

this benefit comes at the expense of higher fuel consumption, since stability is often achieved through

prolonged low-speed operation; (ii) aggressiveness: more impatient or volatile driving tendencies accel-

erate the onset of breakdown and delay recovery. While such behavior may appear more fuel-efficient

in isolation, it undermines overall traffic stability and increases vulnerability to stop–go oscillations;

and (iii) style arrangement in platoon: the spatial distribution of heterogeneous driving styles plays a

decisive role. Certain mixtures can balance delay and fuel efficiency, whereas unfavorable clustering—

particularly of heavy vehicles—can amplify fragility. By contrast, dispersed arrangements improve re-

silience and allow the system to recover more quickly from disruptions.

Moreover, this thesis contributes several methodological advances that support both reproducibil-

ity and extensibility of traffic flow research. It first delivers a consistent and filtered version of the Zen-

traffic dataset, together with its implementation, providing a reliable basis for car-following studies.

Second, it introduces a style-aware car-following model and its implementation, enabling the integra-

tion of latent behavioral heterogeneity into predictive frameworks. Third, it develops a traffic-wave

detection procedure and an automated method for generating platoon-based parallelograms to com-

pute macroscopic variables, such as traffic flow and density, thereby forming a unified framework that

can also be applied to calibrating fundamental diagrams from trajectory data.

Together, these findings provide a scientifically grounded framework for integrating behavioral

heterogeneity into both microscopic traffic theory and macroscopic traffic management strategies.

Practical
The results also yield practical insights for traffic operations and everyday driving. For companiesman-

aging truck platoons, stability-oriented driving strategies should be encouraged, as they reduce break-

down risk and enhance predictability. However, clustering trucks tightly is not recommended in dense

traffic, since this configuration increases fragility and standstill durations. A more robust strategy is

to maintain moderate dispersion of trucks across the platoon, which improves recovery and reduces

system-wide vulnerability under heavy demand.

For individual drivers, the findings suggest that stable conservative driving—characterized by pro-

longed low-speed gliding—may appear safe but is energetically inefficient and contributes to higher

fuel consumption. Conversely, unstable or impatient behavior triggers stop–go waves that slow down

everyone. The most effective practice lies in maintaining stable and moderate headways, avoiding un-

necessary speed fluctuations, and responding smoothly to traffic changes. In other words, driving in a

stable yet efficient manner not only reduces personal fuel use but also contributes to smoother traffic

flow and fewer breakdowns at the collective level.



9
Discussion

9.1. Limitations
While this study advances the understanding of driving style and its impact on traffic breakdown through

adata-drivenmodeling and simulation framework, several limitations should be acknowledged in terms

of data coverage, methodological scope, and experimental design.

First, the training dataset may lack sufficient coverage of extreme cases, such as emergency brak-

ing. Although the car-following data were collected from real-world motorway trajectories, resulting in

44,207 pairs, the frequency of such rare events is relatively low and thus diluted in the dataset. More-

over, this study did not supplement the training data with synthesized corner cases. As a result, the

model occasionally exhibits unrealistic behavior in simulation. To address this issue, the car-following

and platoon simulations in this study regulate the model outputs by imposing constraints and overrid-

ing them when safety-critical violations occur, such as collisions with the leader.

Second, the driving style embedding is extracted from trajectory data through a data-driven style

embedder model, which is jointly trained with the car-followingmodel. Nevertheless, the classification

in such a high-dimensional space may be subjective and sensitive to hyperparameter settings, such

as the number of clusters. Although this study provides a plausible interpretation of each group using

variables like timeheadway and reaction time (see Table 5.2) and relates them to relevant human factors

(see Table 2.2), the interpretation does not fully capture the complexity of driving behavior and thus

remains partly subjective.

Third, this study focuses exclusively on longitudinal car-following behavior. However, traffic break-

down is not solely determined by car-following but is also strongly influenced by lane-changingmaneu-

vers. Driving style may also manifest in lane-changing decisions, such as gap acceptance or aggressive-

ness in merging, which were beyond the scope of this work. Nevertheless, these factors play a crucial

role in congestion formation and propagation, and their omission limits the comprehensiveness of the
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current framework.

Lastly, a key limitation of the experimental design is its idealized nature. The platoon compositions

were constructed according to predefined rules (e.g., homogeneous, alternating, or clustered), whereas

in real traffic, vehicle distributions are highly random. The experiments also assumed that all vehi-

cles remain in a strict car-following state, where each follower continuously responds to its leader. In

practice, especially under free-flow conditions, such a configuration rarely occurs for an entire platoon.

These simplifications inevitably create a gap between the experimental scenarios and actual traffic con-

ditions. Nevertheless, the experiments still provide valuable insights by demonstrating that driving

style exerts a substantial influence on overall traffic efficiency.

9.2. Future Work
Building on the limitations identified in this study, several avenues for future research can be pursued.

First, the scarcity of extreme cases in the training data could be mitigated by incorporating syn-

thesized trajectories, for example generated by classical models such as IDM or other equivalent car-

following formulations. Although such data would not originate from real-world observations, it would

still be informative for themodel to learn how to handle rare but safety-critical situations, such as emer-

gency braking or near-collision scenarios. This approach would enhance the robustness of the model

under corner cases that are underrepresented in naturalistic datasets.

Second, future work should aim to improve the clustering techniques used for driving style classifi-

cation. The current framework relies on manual hyperparameter tuning, such as selecting the number

of clusters, which introduces a degree of subjectivity. More advanced approaches could reduce this

dependence by embedding the classification process directly into the training pipeline, thereby achiev-

ing a more consistent and precise representation of driving styles. In addition, the integration of in-

terpretable machine learning techniques or external behavioral studies could further strengthen the

explanatory power of the resulting clusters.

Third, this study only considers car-following, which is essentially a uni-dimensional maneuver.

While car-following provides a plausible mechanism for traffic breakdown, it does not fully capture the

complexity of real traffic dynamics. Lane-changing, for instance, can significantly alter the behavior of

following vehicles andhas been shown to contribute to traffic breakdown (Zheng et al., 2011). Therefore,

extending the current framework to incorporate both longitudinal and lateral maneuvers would yield

a more comprehensive understanding of style-dependent traffic phenomena.

Lastly, the experimental design could be made more realistic by relaxing the current idealized as-

sumptions about platoon composition and vehicle interaction. While introducing additional random-

ness may obscure some of the causal effects observed in controlled settings, it would better reflect real-

world conditions and provide more externally valid insights. Running experiments in larger and more

heterogeneous traffic environments, includingmulti-lane setups anddiverse vehicle classes, would thus

represent a meaningful step toward translating the findings of this study into practical traffic manage-

ment and control strategies.
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Appendix



A
Methodology

A.1. Variable Definition
The kinematic variables recorded in the data are in a discrete format, and their physical meanings may

differ depending on the context. For instance, the speed may refer to average speed during the time

interval, or the instantaneous speed at the recorded time instance. This nuance may sound trivial, but

it implies two different ways to derive the position based on their values. Therefore, an unambiguous

definition of these variables is necessary for the following work.

In Figure A.1, we present a discrete representation of key kinematic definitions that aligns with

the data storage format in our dataset. The position x corresponds to the instantaneous position

as recorded in the dataset. Velocity is defined as the average velocity over each time interval us-

ing forward differentiation, while acceleration is defined as the discrete forward differentiation

between consecutive velocity values.

For car-following prediction models, the acceleration series typically serves as the output variable.

Based on our operational definitions, we derive position from acceleration through the following equa-

tions:

Figure A.1: Relationships between kinematic variables
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vt = v0 +∆t

t∑
i=1

ai (A.1)

xt = x0 +∆t

t∑
i=1

vi (A.2)

Notably, since velocity is defined as an average quantity instead of instantaneous velocity, the po-

sition computation doesn’t involve acceleration directly. This formulation maintains consistency with

our discrete data representationwhile preserving the physical interpretation of kinematic relationships.

Using this definition, the output, which is in acceleration, can be derived to a lower-order variable,

such as velocity and position. These two variables are easier and intuitive to evaluate.

A.2. Kalman Filter
The Kalman Filter (Kalman, 1960) is an efficient algorithm that estimates the state of a dynamic sys-

tem by combining predictions from a systemmodel with noisy measurements. It operates in two steps:

prediction (forecasting the next state) and update (correcting with new data). This recursive process

provides optimal estimates while tracking uncertainty. Widely used in navigation, robotics, and track-

ing, it handles noisy data effectively and works in real-time without storing past measurements.

This study employs a Kalman filter to address significant data inconsistency issues in the dataset.

By optimally fusing noisymeasurementswith kinematicmodel predictions, the filter produces a refined

dataset with reduced noise and improved physical consistency. The approach mitigates the observed

inconsistencies while preserving the underlying motion characteristics.

The matrix format of the model is more accessible to the filter. According to kinematic model

(Equation A.2), the corresponding matrix format can be easily transformed (Equation A.3):

[
xKF
t

vKF
t

]
=

[
1 ∆t

0 1

][
xt−1

vt−1

]
+

[
0

∆t

]
at−1 (A.3)

where st =

[
xt

vt

]
F =

[
1 ∆t

0 1

]
B =

[
0

∆t

]
(A.4)

(A.5)

where s is the state of the filter, including speed and position. Note that the Kalman filter is a

recursive model, which doesn’t store any previous steps in memory. To meet this requirement, the

model is adapted into the recursive format. After obtaining the model in matrix format, there are still

two core steps to set the filter up.

Prediction uses the output from the very last step as input of the model.

s−t =

[
1 ∆t

0 1

]
st−1 +

[
0

∆t

]
at−1 (A.6)
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After deriving the estimated state, the covariance matrix is necessary for the next step.

P−
t = FPt−1F

T +Q (A.7)

where Pt =

[
σ2
x σxv

σvx σ2
v

]
Q =

[
q2x 0

0 q2v

]
(A.8)

Pt depicts the belief in the estimated state, and reveals their correlations as well. The Kalman filter

requires an initialization of it, which is the initial belief in the states. The parameter setting will be

introduced later in this section. Q indicates the noise along the process, which is another parameter

that needs to be specified in the setup.

Update step involves the computation of the Kalman Gain Kt, which minimizes the Pt, and it

indicates which value, either prediction or measurement, is more reliable.

Kt = P−
t HT (HP−

t HT +R)−1 (A.9)

where H =

[
hx

hv

]
R =

[
r2x rxv

rvx r2v

]
(A.10)

hx and hv indicate the observability of position and speed. And R indicates the presumed noise in

the dataset, which is a parameter required in the setup.

State update

st = s−t +Kt

(
zt −Hs−t

)
(A.11)

Covariance Update

Pt = (I −KtH)P−
t (A.12)

In the update stage, the state, st , which will be used as the input in the next timestep, is required

to be derived as well. In the meantime, as the filter assumes the kinematic model F , it could propagate

noises from one variable to another, which requires the state covariance matrix P to be updated, where

I is the identity matrix.

Notably, this model only involves speed and position (retrieved from Table 4.4), which runs along

themotorway, without taking the geometry of the road into account. In other words, these variables are

scalars. In the meantime, the Kalman filter is applied to each vehicle, both the leader and the follower

independently.

A.3. Dynamic Time Warping
DTW (Dynamic TimeWarping) is a technique that aligns two temporal sequences by warping the time

axis to find an optimal match between them, even if they vary in speed or timing. This flexibility al-

lows DTW to effectively compare vehicle trajectories or driver behavior patterns that are not perfectly
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Figure A.2: Illustration of DTW algorithm

synchronized. By applying DTW to the leader and follower trajectories, it is possible to estimate the

reaction time as the temporal offset that yields the best alignment between the two sequences.

Dynamic Time Warping (DTW) is a widely used algorithm for measuring the similarity be-

tween two temporal sequences that may vary in speed or timing (Sakoe, 1978). Unlike simple point-

to-point distance metrics, DTW allows flexible alignment by stretching or compressing the time axis of

the sequences to find the best possible match.

Formally, given two sequences X = (x1, x2, . . . , xN ) and Y = (y1, y2, . . . , yM ), DTW computes

a warping path W = (w1, w2, . . . , wL), where each wl = (i, j) represents an alignment between ele-

ment xi in X and element yj in Y . The warping path is constrained to start at (1, 1), end at (N,M),

and be monotonically increasing in both indices. The optimal warping path minimizes the cumulative

distance:

DTW (X,Y ) = min
W

L∑
l=1

d(xil , yjl),

where d(·, ·) is the Euclidean distance between points.

Reaction time estimation: In car-following scenarios, the warping path fromDTWcan be used

to estimate the reaction time of the follower. For each time step t in the leader’s trajectory, we identify

the set of aligned time steps in the follower’s trajectory based on the warping path:

wt = {(t, j) ∈W}.

The average temporal shift between the aligned indices reflects the delay in the follower’s response. The

estimated reaction time at time t is defined as:

τt =
1

|wt|
∑

(t,j)∈wt

∆t · (j − t),

where∆t is the sampling interval. This formulation provides a data-driven and robust way to quantify

the temporal delay without requiring explicit labeling of reaction events.
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This approach provides a robust way to quantify reaction time from trajectory data without requir-

ing explicit recording of driver responses.

A.4. Style-CF Model Architecture
A.4.1. Style Embedder
The architecture of the style embedder (left half in Figure 3.1) is shown in Table A.1. The module takes

time series tensors as input, in this thesis, Fstyle = (τ, h,∆x, vF ). As a result, the module outputs a style

embedding after attention pooling, which aggregates the information over time.

Table A.1: Architecture of the Style Embedder module

Component Input→ Output Description

Input projection (B, Thist, FStyle)→ (B, T, 256) Linear projection to embedding space.

Transformer encoder

(L = 2,H = 8)

(B, Thist, 256)→ (B, Thist, 256) Two-layer Transformer encoder with 8

heads, capturing temporal dependencies.

Time scoring

(time_fc)
(B, Thist, 256)→ (B, Thist, 1) Linear layer generating attention scores

for each time step.

Attention pooling (B, Thist, 256)→ (B, 256) Weighted sum over time using softmax-

normalized attention weights.

Output projection (B, 256)→ (B, 256) Linear mapping followed by ℓ2 normal-

ization.

A.4.2. CF Transformer
The CF Transformer part (right half in Figure 3.1) adopts an encoder–decoder Transformer structure

conditioned on a driving-style token. Table A.2 summarizes the architecture of its key components.

A.5. Benchmark Models
A.5.1. LSTM Model
The Long Short-Term Memory (LSTM) (Hochreiter and Schmidhuber, 1997) model (Figure A.3) is a

type of recurrent neural network (RNN) capable of capturing long-range temporal dependencies in

sequential data. In traffic prediction tasks (Huang et al., 2018), LSTMcanmodel the evolution of vehicle

trajectories by learning from past motion sequences. Its memory cell structure allows it to preserve

important temporal patterns over time.

The Long Short-Term Memory (LSTM) network processes sequential data through the following

equations at each time step t:
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Table A.2: Architecture details of the CF Transformer model (used in Style-CF and plain Transformer CF)

Module Architecture Description and Output

Embedder Linear layer: (din → dmodel)

+ Shared positional embedding:

Embedding(Tenc|dec, dmodel)

(Both encoder and decoder embedder)

Projects historical input sequence into

dmodel space and adds temporal positional

encodings. The embedded sequence is

concatenated with the style token before

entering the encoder.

Encoder nn.TransformerEncoder (from

nn.Transformer)
Layers: Nenc = 1

Attention heads: 8

Feedforward dim: 1024

Activation: ReLU, Dropout: 0

Processes the concatenated encoder em-

beddings and the style token to extract

temporal features and context representa-

tion (memory) for the decoder.

Decoder nn.TransformerDecoder (from

nn.Transformer)
Layers: Ndec = 1

Attention heads: 8

Feedforward dim: 1024

Activation: ReLU, Dropout: 0

Causalmask applied on target se-

quence

Generates future trajectory predictions

autoregressively, conditioned on encoder

memory and the style token. The output is

projected via a linear layer (dmodel → 1) to

produce the final predicted variable (e.g.,

speed).

Figure A.3: Repeating Module in LSTM
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it = σ(Wi[ht−1, xt] + bi) (Input gate)

ft = σ(Wf [ht−1, xt] + bf ) (Forget gate)

C̃t = tanh(WC [ht−1, xt] + bC)

Ct = ft ⊙ Ct−1 + it ⊙ C̃t (Cell state)

ot = σ(Wo[ht−1, xt] + bo) (Output gate)

ht = ot ⊙ tanh(Ct)
Notation: σ=sigmoid,⊙=element-wisemultiply, tanh=hyperbolic tangent,h=hidden state,x=input,C=cell state,W∗=weight

matrices, b∗=bias vectors, [·, ·]=vector concatenation, subscript t=current timestep, subscript t−1=previous timestep.

The diagram (Figure A.3) shows the core structure of an LSTM cell, which processes sequential data using gating mech-

anisms. It maintains a cell state (C) for long-term memory and a hidden state (h) for short-term output. Three gates—input,

forget, and output—use sigmoid activations to control information flow, while a tanh function generates candidate values. This

structure helps LSTMs capture long-range dependencies and avoid vanishing gradients, with the same cell repeated across time

steps.

The architecture of LSTM is summarized in the Table A.3.

Table A.3: Architecture of the LSTM.

Component Configuration

Hidden state size ht 64

Number of LSTM layer 1

Input xt [vF ,∆v,∆x, lF , lL]

Output yt aFt (aggregated along hidden state axis)

A.5.2. Transformer Model
The overall Transformer architecture is shown in Figure A.4. It consists of an encoder-decoder structure, where both compo-

nents are composed of N stacked layers. Each layer includes a multi-head attention mechanism and a feed-forward sublayer,

both of which are wrapped with residual connections and layer normalization. The feed-forward sublayer consists of two linear

transformations with a ReLU activation in between.

To incorporate temporal information, positional encodings are added to both the encoder and decoder inputs. In this study,

we adopt learned positional embeddings rather than fixed sinusoidal encodings, in order to increase the model’s flexibility and

representational capacity.

The encoder processes the historical vehicle trajectory, generating contextualized representations through self-attention

and feed-forward operations. The decoder, on the other hand, receives the forecast window and applies masked self-attention

to prevent access to future time steps, thereby ensuring causal predictions. It then performs cross-attention over the encoder

outputs, followedby its own feed-forward layers. Finally, the decoder output is passed through a linear projection layer to produce

the predicted acceleration sequence.

Attention Mechanism
The attention mechanism (Vaswani et al., 2017) dynamically computes the relevance of each input token to others in a sequence.

For a given set of queriesQ, keysK, and values V matrices (Figure A.5), the attention weights are computed as:

A = softmax

(
QK⊤
√
dk

)
, (A.13)
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Figure A.4: Architecture of the Transformer model

These weights determine how much focus the model should place on different time steps when making predictions. Multi-

head attention extends this mechanism by projecting the inputs into multiple subspaces, allowing the model to learn diverse

types of temporal relationships in parallel.

In the context of car-following tasks, attention weights offer interpretability by revealing which past time steps most influ-

ence the predicted vehicle behavior, potentially aligning with the driver’s reaction time.

Causality and Masking
To ensure that future information is not leaked during prediction, causalmasking (Vaswani et al., 2017) is applied to the decoder’s

attention layers. This prevents each time step fromattending to future tokens. Mathematically, themasked attention is computed

as:

A = softmax

(
QK⊤
√
dk

+M

)
, (A.14)

whereM is an upper-triangular mask matrix defined as:

Mi,j =

0, j ≤ i,

−∞, j > i,
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Figure A.5: The concept of attention mechanism

This masking strategy ensures that each decoder step only attends to itself and preceding positions. In our model, masking

is only applied in the decoder, as the encoder processes fully observed historical data and does not require temporal restrictions.

A.5.3. Intelligent Driver Model
The Intelligent Driver Model (IDM) is a car-following model that describes the longitudinal acceleration of a vehicle based on its

own speed, the distance to the leading vehicle, and the relative velocity. The acceleration a is given by:

aFt = amax

1−
(
vFt
vF0

)δ

−
(
s∗(vFt ,∆vt)

∆xt

)2
 (A.15)

where:

• vFt : current velocity of the follower vehicle

• vF0 : desired velocity of the follower

• amax: maximum acceleration

• δ: acceleration exponent

• ∆xt: actual gap to the leading vehicle at time t

• ∆vt = vFt − vLt : relative velocity to the leading vehicle

The desired dynamic gap s∗(vFt ,∆vt) is defined as:

s∗(vFt ,∆vt) = s0 + vFt T +
vFt ∆vt

2
√
amaxb

(A.16)

where:

• s0: minimum spacing

• T : desired time headway

• b: comfortable deceleration

This formulation allows the vehicle to accelerate smoothly toward the desired speed anddecelerate safelywhen approaching

slower traffic.
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A.6. VT-Micro Fuel Consumption Estimation
The VT-Micro model (Rakha et al., 2004) is a microscopic emission and fuel consumption model that predicts the instantaneous

rate of a vehicle based on its second-by-second speed v(t) and acceleration a(t). The model is formulated as an exponential

function of polynomial terms of v(t) and a(t):

JFC(t) = exp
(
ṽ(t)⊤PFCã(t)

)
, (A.17)

where JFC(t) denotes the estimated instantaneous fuel consumption rate, ṽ(t) = [1, v(t), v(t)2, v(t)3]⊤ and ã(t) =

[1, a(t), a(t)2, a(t)3]⊤ are polynomial expansions of speed and acceleration, and PFC is the parameter matrix calibrated from

chassis dynamometer data.

In this study, the VT-Micro model is applied with the calibrated parameter matrix for fuel consumption (PFC) as provided

in Zegeye et al. (2013). The matrix used is

PFC = 0.01


−753.7 44.3809 17.1641 −4.2024

9.7326 5.1753 0.2942 −0.7068

−0.3014 −0.0742 0.0109 0.0116

0.0053 0.0006 −0.0010 −0.0006

 , (A.18)

which corresponds to passenger vehicles and light trucks, consistent with the vehicle types considered in this study.

A.7. Automatic Construction of Parallelograms Along a Platoon
To evaluate local traffic states in a physically meaningful way, the observation windowmust align with the underlying wave prop-

agation and vehicle motion. Instead of using a fixed rectangular window in the time–space domain, we construct parallelogram

whose orientation follows the characteristic directions of the traffic flow.

Specifically, the long edge of the parallelogram aligns with the wave propagation direction (slope w), while the short edge

aligns with the representative vehicle trajectory (slope vplat). The temporal projection of the short edge Ht is fixed by the user

(defining the observation duration), whereas the spatial projection of the long edge Lx is automatically determined from the

platoon geometry. By iterating over the simulation time, a series of parallelograms is generated, each representing a localized

spatio-temporal region for computing Edie’s flow, density, and speed. See Algorithm 3 for details.
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Algorithm 3 Automatic Construction of Moving Parallelograms

1: Input: Platoon trajectories traj ∈ RN×T×3; sampling interval ∆t; wave speed w; fixed temporal

projection of short edgeHt; time range [tmin, tmax]; step size∆T .

2: Output: Sequence of parallelograms P = {P1, P2, . . . , PM}.
3: Initialize P ← [ ]

4: for tc ← tmin to tmax step∆T do

5: Obtain xhead(tc) and xtail(tc) from traj

6: Compute center xc ← 1
2

(
xhead(tc) + xtail(tc)

)
7: Define wave direction v⃗wave ← (1, w)

8: Find intersection points (th, xh) and (tt, xt) along v⃗wave with head/tail trajectories

9: Lx ← |xh − xt|
10: Update center: tc ← 1

2 (th + tt), xc ← 1
2 (xh + xt)

11: Estimate representative speed vplat ← mean(vhead, vtail)

12: Construct parallelogram P using the center (tc, xc), fixed temporal projection of short edge Ht,

and spatial projection of long edge Lx

The long edge is aligned with the wave direction (1, w), and the short edge with the vehicle

direction (1, vplat):

P ← generate parallelogram(tc, xc,Ht, Lx, w, vplat)

13: Append P to P
14: end for

15: return P

A.8. Wave Detection Algorithm
To quantify how traffic waves propagate through a platoon, we develop an automated detection algorithm (Algorithm 4) that

extracts individual wave events from trajectory data and reconstructs complete wave sequences. This enables a consistent esti-

mation of both decelerating and accelerating wave speeds across vehicles.
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Algorithm 4Wave Detection and Chaining

Require: Vehicle trajectories {xi(t), vi(t)}, parameters (Ws,Wℓ, τmax, Lmin)

1: Stage 1: Regime-change detection

2: for i = 1 to N do

3: Smooth vi(t) with windowWs

4: Detect regime-change times Ti using windowWℓ

5: end for

6: Stage 2: Event linking and chain propagation

7: Initialize an empty list of chains C
8: for i = 1 to N − 1 do

9: for each event τi ∈ Ti not yet assigned to any chain do
10: Initialize a new chain C ← {(i, τi)}
11: Set j ← i

12: while there exists τj+1 ∈ Tj+1 s.t. |τj+1 − τj | ≤ τmax do

13: Append (j + 1, τj+1) to C

14: Mark τj+1 as used

15: Update j ← j + 1

16: end while

17: Add chain C to C
18: end for

19: end for

20: Stage 3: Chain filtering and wave characterization

21: Keep only chains with length ≥ Lmin

22: For each chain C, compute wave speed w = ∆xtot
∆ttot

23: return All valid wave chains and their speeds w
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Field Unit Description

Timestamp 0.1s Each CF trajectory pair lasts for 30 seconds

Leader ID - -

Leader Position meter Relative position originated from the first timestep of the trajectory

Leader Speed m/s -

Leader Length m The length of the leader vehicle

Follower ID - -

Follower Position meter Relative position originated from the first timestep of the trajectory

Follower Speed m/s -

Follower Length m The length of the follower vehicle

Table B.1: Example of one sample from the extracted dataframe

Figure B.1: Speed contour plot on Route 4 Scene 5 (Retrieved from Zen traffic data)
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Figure B.2: Speed contour plot on Route 11 Scene 2 (Retrieved from Zen traffic data)
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