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Summary

Traffic congestion has become a pervasive challenge worldwide, imposing severe economic and safety
consequences on modern transportation systems. While infrastructure limitations are often identified
as the direct cause, the diversity of human driving behaviors plays a considerable role in congestion
as well. Differences in drivers’ aggressiveness, anticipation, and reaction patterns shape the collective
dynamics of traffic flow and strongly influence the onset of breakdown. Conventional car-following
(CF) models, which characterize how vehicles follow one another through deterministic equations, cap-
ture speed and spacing dynamics effectively but fall short in representing the heterogeneity intrinsic
to human driving. This limitation restricts conventional CF models from explaining how individual

differences propagate in large-scale congestion phenomena.

To address this gap, this thesis develops a style-aware car-following model that integrates human
behavioral diversity into data-driven motion prediction. The model is built upon the Transformer archi-
tecture and jointly learns motion prediction and driving-style embeddings—latent representations that
characterize the preference of driving. A dedicated CF-oriented Zen-Traffic dataset is constructed and
cleaned through kinematic filtering and car-following validation to ensure the reliability and physical
consistency of the training data. Trained on this dataset, the proposed model significantly outperforms
classical CF models, including the Intelligent Driver Model (IDM), as well as deep learning baselines
such as LSTM and a plain Transformer, particularly in long-duration (90 seconds) simulation.

The learned driving-style embeddings are organized into four distinct and interpretable groups
in two principal behavioral dimensions: aggressiveness and stability. The two dimensions align with
established human-factor theories in traffic psychology, thus enabling an interpretable behavioral map-
ping of driver heterogeneity. Incorporating driving-style embeddings allows the data-driven CF model
to generate diverse driving behavior patterns.

Building on the style-aware CF model, platoon-scale simulations were conducted to explore how
microscopic behavioral heterogeneity affects macroscopic traffic performance. The experiments involv-
ing platoons with diverse driving styles and vehicle types reveal a clear stability—efficiency trade-off.
Conservative styles suppress congestion waves but cause higher fuel consumption due to longer low-
speed operations, while aggressive drivers appear fuel-efficient in isolation but induce instability when
interacting with others. Mixing the two styles offers a practical compromise: when the stable aggres-
sive and stable conservative styles are kept at around 50%—50% proportion, the platoon achieves both
reduced delays and controlled fuel consumption. Unstable styles, however, amplify oscillations most
severely compared to the other styles, destabilizing the flow and accelerating breakdown. Furthermore,
the distribution of trucks in a platoon also shapes traffic stability as well: although clustered formations
can occasionally reduce overall delay, dispersed formations generally enhance resilience and recovery,
offering a more robust strategy under dense traffic.
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In conclusion, this thesis establishes an interpretable framework that embeds human driving het-
erogeneity into the CF model. By combining data-driven CF modeling, behavioral embeddings, and
simulation-based analysis, this thesis provides a novel perspective on how individual behavioral diver-
sity influences collective traffic outcomes. The findings highlight that understanding and managing
driving-style heterogeneity is essential to achieving stable, efficient, and sustainable traffic flow.

The main components of this research, including the model architecture, simulation framework,
and algorithmic implementations, are publicly available athttps://github.com/1iheng423/style-cf.

Use of Generative Al

In accordance with the TU Delft Open Publishing Policies and COPE policies, the author discloses the
use of generative Al tools in the preparation of this thesis. ChatGPT (OpenAl, GPT-5) was used as
an auxiliary tool for language refinement, idea exploration, as well as for code completion assistance.
All generated content was carefully reviewed, edited, and verified by the author to ensure accuracy,
integrity, and originality. The author retains full responsibility for all ideas, analyses, and conclusions
presented in this work.
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Introduction

1.1. Background

Traffic breakdown, or traffic congestion, has become a universal issue with far-reaching economic and
safety implications. A key—but often underemphasized—factor in this problem is driving behavior.
Variations in driver tendencies, such as aggressiveness versus caution, differing following distances,
and varied reaction times, play a critical role in exacerbating congestion. For instance, these behavioral
differences can lead to erratic driving patterns, increased likelihood of abrupt braking, and ultimately a
higher risk of collisions. In the Netherlands, economic losses due to travel delays surged by 49% in 2023
compared to 2022 (Rijkswaterstaat, 2024), while congestion has also been linked to increased rear-end
collisions as vehicles are forced to operate in close proximity at variable speeds (SWOV, 2022).

Breakdown typically occurs when the volume of incoming traffic exceeds a road’s capacity. While
infrastructure limitations (such as lane reductions, on-ramps, tunnels, and roadway sags) are often to
blame, poor driving behavior significantly contributes to it. Instead of—or in addition to—expanding
road capacity, suggesting a better way of driving (e.g., maintaining shorter, yet safe, headways) offers

a promising approach to alleviate congestion.

Given the prominent role of driving behavior in congestion, researchers have long turned to car-
following (CF) models to understand the microscopic interactions between vehicles. CF models aim
to capture the response of a following vehicle to the movements of its leader on a single lane. Tradi-
tional models—including the Gazis-Herman-Rothery (GHR) model, safety distance models, Helly mod-
els, and action point models (Brackstone and McDonald, 1999)—primarily focus on quantifiable states
such as speed, acceleration, and position. However, these models often struggle to account for the full
spectrum of human driving behaviors, which are far more complex and varied than can be represented
by a handful of parameters (Higgs and Abbas, 2015).

Recent advances in data collection and analysis have spurred the development of data-driven CF
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models. Unlike traditional approaches that rely on rigid mathematical formulations, data-driven mod-
els can learn directly from high-resolution car-following data. This enables them to capture nuanced
driving behaviors—such as individual variations in reaction time, acceleration patterns, and headway
preferences—that are pivotal in understanding and mitigating traffic breakdown (Papathanasopoulou
and Antoniou, 2015). By better representing the complexity of real-world driving, these human-like
models provide deeper insights into how different driving styles contribute to traffic oscillations and
bottlenecks.

1.2. Motivation

Building on these data-driven CF models, it is feasible to develop a style-aware Car-following model,
which can offer more insights into the styles, such as discovering new styles. Furthermore, the model
can be incorporated into a simulation to examine how individual driving behavior shapes breakdown.
By modeling interactions among multiple vehicles under different conditions, researchers can analyze
how collective behaviors influence breakdown patterns, assess the impact of potential interventions,
and refine traffic-management strategies. Such simulations improve our understanding of breakdown
and allow systematic testing of how specific driving styles amplify or dampen traffic oscillations.

In summary, recognizing and modeling diverse driving styles is key to understanding and im-
proving breakdown. Data-driven CF modeling and multi-vehicle simulations enable a more com-
plete view of breakdown mechanisms and support the development of more effective, human-centric

traffic management solutions.

1.3. Research Questions

This study aims to address the following research question:
How do different driving styles shape traffic breakdown in car-following?
To answer the major question, this study proposes the following sub-questions:

1. Driving styles: What is the heterogeneity in driving styles, and how do we distinguish them?

2. Car-following: What are the key characteristics in existing CF models, and why are data-driven
CF models necessary?

3. Styles and their Impacts on Traffic: Which driving styles (or vehicle types), and which com-
binations thereof, contribute to traffic breakdown and less energy efficienct under given traffic

conditions?

1.4. Main Contributions
 The study introduces a style-embedding framework that automatically extracts structured rep-
resentations of driving styles from trajectory data. It establishes an interpretable style space—
organized along two human-factor dimensions (aggressive—timid and stable—unstable)—providing
a principled and explainable foundation for analyzing and integrating driving style characteristics
into subsequent tasks.

+ A car-following model is developed that integrates the style embedding (token) derived from the
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embedder. This style-aware model outperforms both classical and state-of-the-art benchmarks in
prediction accuracy. Besides, the model allows specifying an agent as either a truck or a passenger

car by adjusting its vehicle length parameter.

« To investigate traffic breakdown holistically, the study develops fully automated evaluation indi-
cators that combine microscopic indicators with calibrated macroscopic fundamental diagrams,
thereby enabling large-scale collection and analysis of experimental results.

+ The characteristics of different driving styles and their compositions in a platoon are examined
in the context of traffic breakdown. The results demonstrate that stable and conservative drivers
contribute most effectively to improving overall traffic at the cost of higher fuel consumption.
Furthermore, the distinctive role of trucks in traffic flow is investigated.

1.5. Thesis Structure
This study is divided into two parts: (i) style identification and car-following modeling (Research Ques-
tions 1 and 2), and (ii) the impacts of driving styles on traffic breakdown (Research Question 3). See

Figure 1.1 for more information.

In the first part, this study establishes a concrete definition of driving style, framing it as a con-
sistent and preferred way of driving. Unlike conventional approaches that characterize heterogeneity
qualitatively, this work provides a quantitative formulation. Trajectories are clustered based on their
embeddings, which are learned representations trained specifically to encode driving style. To improve
interpretability, each cluster is interpreted according to relevant human factors in car-following, as

identified in prior studies.

Through this formulation, the study effectively reveals the heterogeneity in driving styles and dis-
tinguishes them within the learned embedding space. At the same time, the resulting clusters are en-
dowed with plausible and interpretable meanings grounded in empirical driving behavior research.

Regarding car-following modeling, this study conducts a comparative analysis of classical and
state-of-the-art CF models against the proposed style-based Transformer model. The performance lim-
itations of the benchmark models are attributed to their architectural constraints and design choices,
highlighting their shortcomings in capturing human-like behavior. These findings underscore the ne-
cessity of data-driven approaches—particularly the proposed style-aware CF model—for modeling re-
alistic and individualized car-following behavior.

In the second part, building on the style-aware car-following model and the driving styles extracted
from the dataset, the study investigates the connections between driving styles and traffic breakdowns.
The analysis relies on a series of platoon simulations that incorporate different vehicle types (truck and
passenger car) and driving styles (stable/unstable and aggressive/timid). These experiments aim to
provide a general profile of how different styles contribute to traffic congestion. In addition, specific
platoon compositions—such as alternating-style platoons—are examined to highlight recommended
formations that can enhance overall traffic efficiency.
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Literature Review

To conduct a comprehensive literature review and address the primary research question, the following
keywords are utilized in Scopus and Google Scholar to cover all relevant aspects of the study (Table 2.1)

Given the growing prominence of data-driven models in recent years, the search results are occa-
sionally sorted by publication date to ensure that no relevant data-driven CF studies are overlooked.

This literature review addresses three subtopics relevant to the study. It first defines the concept of
driving style and examines existing research on its clustering and characterization. It then explores the
relationship between driving style and traffic breakdown in the current research, highlighting how indi-
vidual behavioral variations may contribute to flow instability. Finally, it discusses key considerations
for incorporating driving style into car-following models and reviews the state-of-the-art approaches

in this domain.

2.1. Heterogeneous Driving Styles
Congestion can arise from the interaction of heterogeneous driving styles, making it essential to define
and analyze driving style as a key factor in traffic dynamics.

Review Keywords

Congestion Congestion Dissipation Car-following, Traffic Congestion, Stop-and-
go waves, Traffic Oscillation

Driving Style Driving style analysis, Driving behavior classification

Historical CF Development | Car-Following Model, Car-following Congestion

Data-driven CF Data-Driven Car-Following, Deep Learning Car-Following

Table 2.1: Keywords used in literature review
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To clarify, according to the definition by Sagberg et al. (2015), driving style refers to a consistent set
of behavioral preferences inherent to the driver and independent of the driving context, whereas driv-
ing behavior is context-dependent and shaped by driving context, such as traffic density. Accordingly,
driving style captures stable traits—such as preferred following distance and reaction time—that sys-
tematically influence car-following behavior and are typically embedded in microscopic traffic models
such as the IDM and Newell’s model.

2.1.1. Human-factor in Driving

Human factors are a key topic in this thesis, explaining why drivers behave differently under various
conditions. Since the car-following model is a psycho-physical model involving complex human factors,
it is important to clearly specify which factors have been recognized in previous research. These factors

help to interpret the clustering of driving styles.

In Saifuzzaman and Zheng (2014), several human factors are mentioned. Some of these can be
quantitatively observed in the trajectory data, and will be used to qualitatively describe a specific type
of driver, while others cannot. Table 2.2 lists the details of these factors.

Table 2.2: Human factors in driving style, categorized by observability from trajectory data

Factor Description

Observable from trajectory data

Reaction time Can be derived using DTW by pairing two speed sequences

Temporal anticipation Drivers can predict traffic situations for the next few seconds

Aggressiveness Measured by time headway and reaction time

Driving skills Assessed by the standard deviation of headway (o) and reaction
time (o)

Distraction Partially reflected by variations in ¢}, and o,

Not directly observable from trajectory data

Socio-economic characteristics e.g., age, gender, income, education

Estimation errors Spacing and speed are perceived with limited accuracy
Perception threshold Humans cannot detect minor changes in stimuli

Spatial anticipation Drivers consider multiple vehicles ahead, not directly measurable
Context sensitivity Driving style may vary depending on traffic context

Imperfect driving Same driver may behave inconsistently under similar conditions

2.1.2. Clustering Driving Style

Driving behavior is considered the outcome of an intricate psychological process (Ranney, 1999). Each
cluster’s attributes and peculiarities can be described phenomenologically using a set of criteria (e.g.,
average headway, acceleration, etc.). This clustering forms the foundation for analyzing drivers prone

to causing congestion, which is of our interest.

The heterogeneity in driving behaviors significantly influences model performance. Ossen and
Hoogendoorn (2011) demonstrates that this heterogeneity impacts the effectiveness of conventional
microscopic models, highlighting their limitations. This necessitates a shift toward more generic mod-
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els.

Efforts to identify clusters of potential driving styles continue, with no definitive conclusions yet
reached. Building on the GHR model, Higgs and Abbas (2015) suggests the existence of approximately
30 distinct clusters of car drivers, each characterized by unique parameter settings. Moreover, this re-
search highlights that truck driving behaviors are generally more homogeneous than those of passenger
cars. Additionally, Chen and Chen (2019) identified three significant clusters based on the features of
speed maintenance, lateral acceleration, braking, and longitudinal acceleration maneuvers. Attempts
have been made to explain these clusters by driver attributes such as gender and age, yet the associa-
tions remain tentative.

Therefore, the clustering of driving styles remains at a very preliminary stage, with neither an
established number of clusters nor a clear understanding of the mechanisms behind such clustering.

2.2. Driving Style in Traffic Breakdown

As stated, congestion arises when road capacity is insufficient to accommodate the traffic volume, often
due to factors such as incidents or accidents that reduce capacity. In traffic flow theory, congestion is
defined as a condition where the density of vehicles on a given road segment exceeds the critical density.

Traffic oscillations are a common cause of congestion and are frequently observed on roadways.
The oscillation is termed as stop-and-go waves as well. Drivers typically experience the alternating
stop-and-go phases while driving through congested areas but often remain unaware of the underlying
causes (e.g. bottleneck, accident) of the congestion. When such waves propagate upstream without dis-
sipating, they can escalate and intensify the congestion, pushing the local traffic state into the congested
regime (Suh and Yeo, 2016).

The onset of the oscillation is ascribed to be longitudinal (e.g. instability in driving behaviors) and
lateral (e.g. lane-changing maneuver) induced by spontaneous driving behaviors or external factors
(e.g. bottleneck), the growth or dissipation of the waves are statistically verified to be independent of
the trigger of such waves (Zheng et al., 2011).

As perturbations could occur in the normal traffic flow regardless of being spontaneous or external,
the developing stage is more of interest in research. Instead of originally conjectured to be asymmetric
acceleration and deceleration when leaving and entering the oscillation, the growth/dissipation of the
oscillation is deemed to be driving patterns (behaviors) in more later studies (Laval and Leclercq, 2010).
Simultaneously, Laval and Leclercq (2010) suggests that the actions of drivers, such as those who are
aggressive or timid, contribute to the intensification of oscillations. Hence, it is crucial for us to explore
which specific driving patterns worsen the stop-and-go waves, beyond merely focusing on aggressive

and timid drivers.

In prior research (Laval and Leclercq, 2010; Zheng et al., 2011; Suh and Yeo, 2016), the classifica-
tion of driving behaviors remains at a relatively basic level, focusing on factors such as reaction time,
minimum spacing, and acceleration. While this simplicity aids in analysis, it may overlook broader clus-
ters of driving patterns beyond merely aggressive and timid behaviors that exacerbate the oscillation
into congestion.
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2.3. Development of Conventional Car-following (CF)

To explore the impact of driving style, we need a tool to extract relevant behavioral features from trajec-
tory data. Car-following (CF) models serve this role by translating raw trajectories into interpretable
variables like acceleration, headway, and reaction time. These outputs allow us to analyze driving style
and its influence on traffic breakdown. Therefore, CF model is essential for the experiments that follow.

Early car-following (CF) models were designed to describe longitudinal vehicle interactions through
deterministic rules, often assuming homogeneous driver behavior. The GHR model (Chandler et al.,
1958) represents a foundational attempt, where acceleration is a function of spacing, relative speed,
and own speed. Despite its historical importance, its lack of robustness and contradictory parameter
estimations limited its long-term relevance (Brackstone and McDonald, 1999).

Later developments introduced behavioral considerations. Collision avoidance models such as
Gipps and IDM (Gipps, 1981; Treiber et al., 2000) separated driving into distinct regimes (e.g., free-
flow and interaction), relying on intuitive parameters like reaction time and deceleration. While more
realistic, they remain highly sensitive to calibration and often assume uniform behavioral patterns.

Other models, such as Helly’s linear model, incorporate driver perception thresholds, aligning with
the notion of action points (Brackstone and McDonald, 1999). Newell’s model (Newell, 2002), though
parsimonious and analytically efficient, simplifies car-following behavior as a fixed delay in trajectory
replication—again overlooking inter-driver variability.

Across these formulations, a common limitation remains: the inability to account for driver het-
erogeneity and complex cognitive processes. Several empirically observed behavioral phenomena are
often omitted to preserve mathematical simplicity:

1. Memory effect is initially proposed assuming the driver reacts to the speed of its leader in a pe-
riod of time, rather than merely in a time instant (Lee, 1966). The model successfully smoothens
the acceleration profile. However, due to the complexity of solving an integral, the memory effect
stayed unnoticed till the advent of data-driven models. The concept of memory can be extended

to the actions (speed, acceleration) by the follower previously, not merely the speed of the leader.

2. Reaction time is the time lag between the maneuver from the leader and the reaction made
by the follower. Firstly specified in Chandler et al. (1958), the reaction time becomes a well-
acknowledged effect existing in CF.

3. Psychological mechanism contends that driving is fundamentally a cognitive and perceptual
process, characterized by inherent uncertainties since drivers are not fully aware of the precise
distance or speed of the vehicle in front of them. Or the other way around, the drivers don’t react
till the limit is reached (i.e., distinguishable enough by a human driver). Therefore, the fuzzy-
logic framework and Leutzbach and Wiedemann (1986) are consequently formulated. However,
the models are criticized for their mathematically unsound and complicated (Brackstone and Mc-
Donald, 1999).

4. Heterogeneity in driving behaviors is undeniably a widely recognized phenomenon. Nonethe-
less, psychological factors play a significant role behind the scenes, resulting in CF models apply-
ing a different set of parameters to account for this variability. A related topic is driving behavior
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clustering, which will be discussed in further detail later.

5. Asymmetric effect is believed to be one possible culprit in exacerbating traffic oscillation at
the developing stage. This asymmetric response can intensify traffic oscillations, making it a key
phenomenon to capture in CF modeling. The effect implies the drivers don’t behave the same
when accelerating and decelerating.

These limitations motivate the need for more flexible, data-driven approaches that can implicitly
capture complex behavioral traits without predefined functional forms.

2.4. Data-Driven CF Model

Conventional car-following (CF) models have become increasingly intricate to better capture observed
traffic phenomena. For instance, the GHR model assumes continuous interaction with the leader, while
models such as Gipps and IDM incorporate distinct regimes, including free-flow and interaction phases.
However, introducing additional regimes complicates the analytical framework and poses challenges in
integrating measurement data. These limitations have spurred a transition toward data-driven models,
which provide greater flexibility and reduce sensitivity to predefined regimes (Papathanasopoulou and
Antoniou, 2015). Moreover, psychological studies on driving behavior suggest that drivers’ behavior
may evolve over time depending on the prevailing traffic conditions (Ranney, 1999). These develop-
ments highlight the looming bottlenecks in conventional CF models and pave the way for exploring
alternative solutions.

Early data-driven CF models based on shallow architectures like MLPs and Elman networks showed
improved accuracy over classical models (Simonelli et al., 2009; Colombaroni and Fusco, 2014), but
struggled to incorporate temporal dependencies. Some also attempted to model driver psychology via
fuzzy rules (Chong et al., 2013), yet lacked the capacity to fully capture the memory effect and complex
behavioral dynamics.

Initial experiments primarily leverage the capabilities of time-series data, yet they are constrained
by basic and shallow neural network designs like MLPs, which inherently lack memory mechanisms and
aren’t specifically optimized for handling time-series information. In the deep-learning era, though,
temporal features can be seamlessly integrated with specialized neural network architectures, enhanc-
ing data-driven results significantly.

Recurrent Neural Networks (RNNs) and Long-Short Term Memory (LSTM) models are widely rec-
ognized within the time-series deep-learning domain. Zhou et al. (2017) introduces an RNN model for
forecasting CF, asserting that RNNs can intrinsically capture the heterogeneity in driving behavior
(Phenomena 4), unlike IDM’s parameters which reflect a generalized scenario and struggle to predict
specific driving patterns such as aggressive driving. Huang et al. (2018) places emphasis on utilizing
the LSTM’s ability to capture asymmetric effects (Phenomena 5). Wang et al. (2019) developed a
similar time-series GRU network to study its performance in reproducing the action point (Phenom-
ena 3). On the other hand, Ma and Qu (2020) employed a sequence to sequence model to break the
output length limit, which is required to be less or equal to the input size, in LSTM and similar time-
series model. On top of that, the reaction time (Phenomena 2) is externally calibrated and plugged
into the model.
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Some studies also explore hybrid approaches, where models like IDM are incorporated into deep
networks as regularizers (Mo et al., 2021; Geng et al., 2023). While these improve generalization and
robustness, their reliance on predefined physical rules limits the ability to fully capture diverse and

complex driving behaviors.

Table 2.3: Existing studies summary in deep learning CF framework (subscript denotes the length of the time series).

Reference | Model Inputs Outputs Loss Memory
(s)
Zhouetal. | RNN [Azy, Avg, v le—10:¢ afl MSE(af") 1
(2017)
Morton LSTM + Gaus- [Az, Av,v",a"]; 100  Distribution(af,;) MSE(v{) 10
et al. (2017) | sian Mixture
Huang LSTM [Az, Av, vF ]t _100:¢ [Azty1, vl 4] MSE(z{) + 10
et al. (2018) MSE(v])
Wangetal. | GRU [Az, Av, vF 110t af,orvf MSE(z]) 10
(2019)
Maand Qu | Seq2Seq [Az, Av, v i _50:¢ af+1:t+h MSE(z]") 5
(2020) (LSTM)
Mo et al. LSTM + IDM [Az, Av, vT] af MSE(a{") 1
(2021)
Gengetal. | Transformer + [Az, Av, v,z ], xtF+1:t+h MSE(z]") 5
(2023) IDM el vl pgn

Overall, deep learning models have demonstrated notable improvements in predictive performance
and behavioral fidelity by incorporating temporal dynamics and driver heterogeneity. They also show
promise in capturing rich driving information by incorporating possible phenomena in CF, which are
related to human factors, though doing so requires careful architectural design and task formulation in

training.

2.5. Research Gap

1. While driving styles and behaviors have been acknowledged as significant, there is a lack of studies
that incorporate clustering during the training phase in data-driven models. In current practice,
clustering occurs independently of the training phase, using standard clustering methods, fol-
lowed by the development of several models tailored to different driving patterns (Zhu et al., 2018;
Zhou et al., 2017). Additionally, the clustering remains rather basic, often characterized simply as
timid or aggressive (Laval and Leclercq, 2010; Zhang et al., 2022). Adopting a data-driven model
allows deeper insight into the clusters produced in an unsupervised manner through post-hoc
analysis of the identified driving style groups.

2. Existing data-driven CF models rarely incorporate components explicitly dedicated to represent-
ing driving styles or ensuring that style-related features are meaningfully reflected in the model
outputs (Zhou et al., 2017; Zhu et al., 2018; Ma and Qu, 2020). Furthermore, few studies discuss
how input design can facilitate the learning of driving styles, leaving the relationship between
model inputs and style representation largely unexplored.

3. The relationship between driving style and traffic breakdown remains elusive in existing research.
Although some preliminary progress has been made through analytical experiments based on the
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Newell CF model, these studies often neglect many influencing factors to preserve model parsi-
mony (Zheng et al., 2011; Laval and Leclercq, 2010; Chen et al., 2014). Therefore, this study aims
to investigate this relationship using a fully data-driven modeling and simulation approach. This
involves designing breakdown experiments to examine how heterogeneous driving styles influ-
ence traffic flow stability and the onset of breakdown.



Part1l

Style-aware Car-following Model



Methodology

3.1. Style Embedder

Although the existence of driving behavior is well acknowledged in the literature, there is no consensus
on how to quantitatively define driving style, which is shaped by complex psychological and behavioral
processes (Ranney, 1999). Following Sagberg et al. (2015), this study defines driving style as a habit-
ual way of driving—a recurrent pattern of behavior across driving occasions that encompasses both
automatized and consciously controlled actions. In contrast, driving behavior is understood as context-
dependent reactions.

Given data limitations—specifically, the short trajectory lengths per driver—we assume that driving
behavior may vary with traffic context, whereas driving style remains stable over time. To assess this
assumption, we leverage a data-driven embedding model to examine whether long-term style traits can
be inferred from observed trajectories.

However, traditional models such as the IDM often assume that drivers behave optimally, which
fails to capture real-world variability. Moreover, they rely on predefined, context-insensitive parame-
ters (e.g., average time headway). In contrast, our approach learns latent driving style representations
directly from raw trajectory data, aiming to provide empirical evidence on whether driving style consti-
tutes a stable driver-level trait or a context-dependent phenomenon.

3.1.1. Driving Style Features
Previous studies have revealed links between human factors and driving styles (Table 2.2). In this study,
these factors are incorporated as input features for the data-driven style embedder model.

Meanwhile, previous studies have linked certain quantities to driving styles, which are widely used
in classical car-following models. Instead of letting the data-driven model discover these patterns im-
plicitly, we incorporate domain knowledge into feature selection to enhance interpretability. The se-

13
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lected features serve both as behavioral indicators and as a basis for understanding the learned style
embeddings.

Human factors play a significant role in car-following behavior. While some of these factors cannot
be directly examined due to the limitations of trajectory-only data, others—such as reaction time—are
implicitly embedded in the observations. Quantifying these latent factors is essential for advancing
this research. Although using hand-crafted features introduces potential issues, such as definitional
ambiguity and sensitivity to noise, it remains necessary to define several style-related metrics. These
features allow for the integration of domain knowledge into the model and support the interpretation
of both the learned embeddings and the resulting style clusters.

Note that both reaction time 7 and time headway h are extracted as time series and directly used
as input features for the style embedder (see Table 3.3 for the style embedder’s complete input series).

Reaction time

Reaction time 7 is defined as the temporal gap between aleader’s action and the corresponding response
of the follower. In the literature, Sharma et al. (2018) propose a dynamic time warping (DTW) based
estimation. However, this method may fail in cruising regimes—when both vehicles travel at nearly the
same speed—since the leader—follower trajectories become indistinguishable (see Appendix Dynamic
Time Warping for details).

To address this limitation, we introduce a dynamic upper bound on the DTW-estimated reaction
time. The upper bound is determined by the inter-vehicle spacing in combination with an assumed
traffic-wave speed (setting w = —15 km/h), using the ground-truth w = Axz/7. This ensures that
the estimated delay does not exceed a physically plausible value. This modification prevents the DTW
method from producing unrealistic results in near-cruising scenarios, while preserving its ability to
capture reaction dynamics in other contexts.

Time headway

Time headway h, as defined in Equation 4.3, can be used to describe driver aggressiveness, driving
skills, and other human factors in car-following behavior. For instance, the Intelligent Vehicle Model
(IDM) includes the desired time headway as a key parameter. Therefore, in this study, time headway
is selected as one of the style-related features.

3.1.2. Driving Style Embedding Model

According to Table 2.2, some factors—such as socio-economic characteristics, estimation errors, spatial
anticipation, and context sensitivity—are not available in the dataset. Therefore, including these factors
in the analysis is not feasible in this study; however, this does not imply that they do not contribute to
the diversity of driving styles. Other factors are implicitly represented in the dataset, but there is still no
consensus on how to quantify them. This study aims to develop methods to quantify these factors and
analyze their contribution to the clustering of driving styles, regardless of whether they are directly used
as input data. These factors are expected to provide a meaningful interpretation of the classification
based on embeddings produced by a deep learning model.

Driving style is often conceptualized as a time-independent characteristic. Consistent with this
view, the present study also treats driving style as a time-independent latent factor. Since driving style
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is not directly observable, it typically requires calibration when used as input for downstream models.
In contrast, this study proposes a data-driven embedding model that automatically infers driving style
from vehicle trajectory data.

Rather than performing direct temporal aggregation—which risks discarding temporally sensitive
features such as reaction delays—this study leverages a neural attention mechanism to preserve and
exploit the temporal dependencies. Specifically, an attention layer (see Figure A.5) is trained to capture
correlations between different timesteps within a trajectory sequence.

The encoder component of the Transformer architecture (Figure A.4), namely the left-hand block,
serves as the core of the driving style embedding model. While the encoder outputs a sequence of hidden
representations across time, a single style representation (i.e., the driving style token or embedding) is
ultimately obtained by aggregating the encoder’s output over the temporal dimension. This aggregated
token serves as a compact, time-independent representation of the driver’s behavior. The complete
process is illustrated in (Figure 3.1).

The model takes as input a sequence with shape (Time, Feature), setting Tgye = Thist (see Fig-
ure 3.1), and produces a fixed-length vector representation, where the output dimensionality is user-
defined. Notably, the resulting embedding is time-independent, meaning it does not retain any explicit
temporal information. Moreover, the model is capable of processing sequences of arbitrary length along
the time axis, providing flexibility in handling vehicle trajectories of varying durations.

The details of the architecture are illustrated in Table A.1.

3.2. Style-aware CF Model

Based on the plain Transformer model described in Section Transformer Model, the Style-aware CF
model extends this architecture by incorporating a style embedding. This embedding serves as addi-
tional information to regulate the model’s behavior. Ideally, the model should be able to recognize the
input and utilize this information effectively.

Rather than merely relying on the Transformer model for prediction, driving style can also be ex-
tracted from time series data. However, the style embedding is represented in a time-independent
format, meaning it lacks temporal information. Integrating the processed decoder series, the encoder
output, and the style embedding presents a significant challenge. To address this, the following section
explains the proposed approach in detail.

3.2.1. Integrating Style to CF model
The architecture of the style-aware CF model is illustrated in Figure 3.1, and architecture specifications
are provided in Appendix Style-CF Model Architecture.

The model consists of two major parts: i) a style embedder, an independent Transformer encoder,
which produces a time-independent style token. The CF Transformer integrates the style token from
the embedder and produces the acceleration prediction.

Worth noticing, the model takes three inputs: encoder and decoder sequences, representing the
standard car-following transformer structure, and a style series, which serves as complementary input.
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Figure 3.1: Integrating the style embedding (token) into the Transformer CF model (The details of the architecture can be
referred to section A.4)

History window Prediction window
(Encoder Series) (Prediction Series)

4

7 time

Label window
(Decoder Series)

Figure 3.2: Definitions of inputs and outputs of the Transformer model (also of Transformer part in Style-aware CF model)

The style series is originally a time sequence but is transformed into a time-independent embedding
(token) through the style embedder before being prepended into the model. This design allows the
style embedder part to participate in training. As a result, the model produces two outputs: i) a style
embedding, useful for clustering, driving style analysis, other downstream tasks, and optionally for loss
function computation; ii) the predicted acceleration in the prediction window, used in car-following
prediction and loss function.

This design allows the attention mechanism to dynamically decide whether and how to utilize the
style information, and such a utilization can be later revealed in the attention matrix.

3.2.2. Inputs and Outputs Definitions
Since the Transformer architecture requires multiple inputs, which could be confusing at the beginning,
the details of the definition and the segmentation of a single training sample are further illustrated.

Similar to the standard Transformer input, the structures of the encoding and decoding series in
Style-aware CF model follow the plain Transformer architecture. In this study, specifically, we define
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the input series in the following notations.

Figure 3.2 shows the structure of one training sample. The dashed line separates the historical
window Ti,is; from the prediction window T},;q. The label window Ti,,¢ includes the leader’s behavior
that the follower reacts to. Specifically, the part of the label window on the left (i.e., inside the his-
tory window) is further defined as the History Label window, and the part on the right (i.e., inside the
prediction window) is defined as the Future Label window.

Importantly, although the label window spans both past and future relative to the decoder, the
masking mechanism restricts visibility to only the earlier time steps within the prediction horizon (Ap-
pendix Causality and Masking). In effect, the visibility matrix becomes lower-triangular padding with o
(visible), allowing access to past information while blocking all future positions. This scheme is applied
to features related to the leader, i.e. v” in this study.

To prevent data leakage, features related to the follower vehicle—such as its velocity—are not used
in the decoder input during the prediction window. These features are masked using average values
from the historical segment to avoid introducing future knowledge. This scheme is applied to features
related to the follower, i.e. v in this study.

The key difference between the plain Transformer CF model and the Style-aware CF model lies in
the additional style series input (Figure 3.1), which is constructed using style-relevant features identi-
fied in Table 3.1. Specifically, the selected features— (7, hy, Az, v}")—capture both driving style (7, h)
and regime (Ax;,v!"). During training, v{" in the prediction window is masked out to prevent data
leakage. The organized details of inputs, outputs, and model structure can be found in Table 3.3.

3.3. Model Training
3.3.1. Setup

The Style-aware CF model was trained on a workstation equipped with an Intel i7-12700K CPU, an
NVIDIA RTX 3070Ti GPU (8 GB VRAM), and 32 GB RAM, using PyTorch 2.1 with CUDA 12.1. Training
was conducted for 30 epochs with a batch size of 64. The Adam optimizer was employed with an initial
learning rate of 10~* and a weight decay of 10~°. kinematic position loss (see Equation 3.1) was used
as the training objective, and a step-based learning rate scheduler reduced the learning rate by a factor
of 0.1 every 10 epochs. See Table 3.3 for hyper-parameter details.

On this setup, the full training required approximately 26 minutes. Model checkpoints were saved
according to the lowest validation loss, and all experiments were run with a fixed random seed, 42 in
this training, to ensure reproducibility. The training process demonstrated stable convergence, with
validation loss plateauing after roughly 20 epochs.

All code and scripts used for model training, evaluation, and simulation are publicly available at
https://github.com/lihengd23/style-cf, ensuring full reproducibility of the results.

3.3.2. Loss function
Since the model predicts acceleration while the quantities of interest are the follower’s velocity and, at
times, its position, the kinematic relations must be incorporated into the loss function. This ensures
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that both speed and position can be consistently recovered from the predicted accelerations. With
ground-truth position and speed available, defining a suitable loss function becomes straightforward.
In this study, we focus on the accuracy of the follower’s position, which requires two levels of integration
from acceleration. As a result, achieving accurate and stable position prediction also depends on the
quality of predicted speed and acceleration, especially under longer prediction horizons.

The corresponding loss function is given in Equation 3.1 and the formulation follows Equation A.2:

pred

Ut =1 +At2a

pred

af =2l + At Z oF (3.1)
Tpred 9
Loss = i — )
pred ;—7

Here, 21, 9/, and a/" denote the model predictions of position, speed, and acceleration, respec-

tively, while zf", vf', and a!” represent the corresponding ground-truth values recorded in the dataset.
Note that the model requires initialization values—z{’, v{’, and a{'—which correspond to the follower’s
state at the timestep immediately preceding the prediction window.

Namely, the loss function corresponds to the mean squared error (MSE) of the follower’s position
over the prediction window. With this training approach, physical consistency is preserved throughout
the process. As a result, the predicted acceleration remains realistic, free from extreme outliers or jitters
artifacts, and aligns more closely with real-world driver behavior.

3.4. Testing: Model Evaluation Framework
To properly evaluate a style-aware car-following (CF) model, the following requirements must be satis-
fied:

1. Recursive prediction: The model performance should be evaluated over a long prediction
horizon, relying solely on its own past predictions rather than real-world data inputs. This allows
us to observe how the model behaves autonomously without external data guidance.

2. Independent style evaluation: The performance of the style embedder should be assessed
separately to verify whether it effectively captures and represents the intended driving styles.

3. Style-informed testing: During CF model testing, style information must be explicitly pro-
vided to the model, enabling an examination of whether incorporating style awareness leads to

measurable performance improvements.

This naturally leads to the following sections. First, we introduce the concept of recursive predic-
tion. Next, we present the methodology for evaluating the style embedder. Finally, we describe in detail
the design of the testing experiments.
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Figure 3.3: Recursive Prediction over time

3.4.1. Car-following Simulation: Recursive Prediction

The Style Transformer model and the corresponding benchmark models (see Section Benchmark mod-
els) are short-duration prediction models, meaning they are trained with a prediction horizon of only
a few seconds (e.g., style-aware CF predicts 4 seconds in the future). This choice is primarily driven by
considerations of computational cost. However, strong performance over a short prediction horizon
does not necessarily translate to reliable performance over longer durations, as prediction errors can
accumulate over time. Long-duration prediction poses a greater challenge for models trained on short-
duration datasets and thus serves as an ideal criterion to evaluate their generalization capability. More
importantly, this study aims to investigate the influence of driving styles on congestion formation. The

long-duration evaluation is, thus, preferred.

Recursive Prediction

As a single-agent system, recursive prediction is essential for achieving long-duration forecasting. How-
ever, since the trained models are primarily optimized for short-duration prediction, a recursive pre-
diction algorithm is developed to decompose the long-duration prediction task into a sequence of short-

duration steps.

The overall process is illustrated in Figure 3.3. The long-duration trajectory is predicted recur-
sively, with each iteration advancing the time window by T},.eq seconds. The algorithm terminates auto-
matically upon reaching the end of the sequence. A key requirement of this recursive framework is the
initialization step, where the initial historical segment (the yellow block 7;.,,) is filled with ground-truth
data, as the model requires a history window to begin prediction.

It is important to note that after the first prediction step, the subsequent input windows (the green
blocks) start to contain the model’s own predictions instead of ground-truth values, as they overlap with
previous outputs. Although the model initially relies on ground-truth input, the prediction horizon is
sufficiently long—90 seconds per clip—so the influence of ground-truth data is negligible in the overall

sequence in the long term.

Simulation Algorithm

Based on the idea of recursive prediction, this report proposes a car-following simulation algorithm that
generates the follower vehicle’s trajectory given the leader’s movements. The details are presented in
Algorithm 1, where the simulation produces the complete trajectory of the follower within the specified

time range.
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Algorithm 1 Recursive Prediction with Sliding History

1: Inputs:
groundtruth data d[Ll:T], d[F1 7)) including position, velocity and acceleration
model M
2: Params: Ti,;y (history length), 7},.q (prediction horizon), 7" (length of time series)
: Output: Predicted self movements 7;;.7) (including position, velocity and acceleration)
: Initialize a default training movement series xﬁ . < empty series Of1.7)

A IR T . . F 13
+ Initialize first history window (.. < df; 7,

N A~ W

: Initialize the start timestep ¢y < Thist

7: for k =1to (T — tg)/Tprea| do

8: t < to+ (k—1)Tpreq

9:  Prepareinput D « (dff_r,_ ., Tyl ol gy
10: Predict §;+. 111, < M(D)

1:  Append gt Tl to

F

12: Update history window: Tttt Tyrea] et 4+ Torea)

13: end for

14: return g

3.4.2. Testing: Style Embedder

Driving style embedding, or style token (Figure 3.1), is time-independent and captures the driving style
after training. Due to its time independence, the style embeddings can be directly clustered in the
embedding space.

Although the exact representation of the embeddings is unknown, clustering algorithms can still
be applied to differentiate driving segments. In this thesis, the K-means algorithm is employed.

To avoid data leakage, the dataset used for the following analysis is the long-duration dataset (Fig-
ure 1.1), which is fully independent from the training and validation data.

Styles Clustering and Visualization

K-means is a widely used unsupervised clustering algorithm that partitions a set of n data points into K
non-overlapping clusters. It minimizes within-cluster variance by iteratively updating cluster assign-
ments and centroids. Specifically, each data point is assigned to its nearest cluster center, which is
subsequently updated as the mean of the points within the cluster. This process repeats until conver-
gence, typically when cluster assignments stabilize or the objective function no longer changes.

K-means clustering is conducted on the predefined embedding space of driving-style segments.
The clustering operates directly on the learned embeddings. The number of clusters is selected based on
the elbow method, and the quality of the resulting partition is assessed using the Silhouette Score, which
measures both intra-cluster cohesion and inter-cluster separation, and further reveals the distribution

of driving styles.

To visualize the clustering structure, the high-dimensional embedding representations are pro-
jected onto a 2D space using Principal Component Analysis (PCA). While the resulting plot provides an
intuitive overview of cluster distribution, it may not fully reflect separability due to possible non-linear
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Symbol Quantity Related human factors
h Average time headway Reflects aggressiveness and possibly driving profi-
ciency
T Average reaction time Associated with aggressiveness, driving proficiency,
and temporal anticipation
or Standard deviation of re- Related to driving proficiency and distraction, as
action time variability may indicate inconsistent behavior over
time
on Standard deviation of Also associated with driving proficiency and distrac-
time headway tion, similar to o,
I Length of follower vehicle Truck drivers exhibit different behavior compared

to passenger car drivers (Ossen and Hoogendoorn,
2011)

r Length of leader vehicle Driver behavior may differ when following a truck
rather than a passenger car

Table 3.1: Driving style-related car-following quantities

structures in the original space. The visualization thus serves as a qualitative reference for assessing
the clustering results. Note, PCA is only used for visualization, and has no impact on any downstream
tasks.

Style Interpretation and Validation

After visualizing the clustering results, it is essential to interpret the characteristics of each group. Ac-
cordingly, Table 3.1 presents the style-related indicators. These features are designed based on the
human factors in car-following (CF), as listed in Table 2.2, because they are informative for uncovering
the underlying driving styles reflected in the trajectories. These indicators thus serve as the foundation
for interpreting the behavioral characteristics of each cluster.

Furthermore, after identifying their characteristics, we need to validate that the differences be-
tween groups indeed exist in terms of driving style, rather than merely in the embedding space—which
could be misleading or influenced by noise. To this end, we design the token-replacement experiments:
that is, we replace the tokens of a sample with the style tokens (and vehicle type tokens) from other
groups, then observe the resulting behavioral changes and compare the effects. The details are pro-
vided in Section Truck as Follower and Section Cross-over Test case: Effectiveness of the embedding.

To illustrate this more intuitively, we further provide two examples showing that the observed
differences originate from genuine variations in driving style, rather than superficial disparities in the
embedding space. The details are provided in Section Example: Style Counterfactual Test.

3.4.3. Incorporating Style in Testing
Different models require different input structures, and to ensure a fair comparison, the following setup
decisions were made:

Non-style-aware Testing: Due to the limited size of the testing set and the fact that LSTM
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Figure 3.4: Training and testing data handling involving style information

and plain Transformer models do not incorporate explicit style information, we ensure a comparable
setting by using average-style representations. Specifically, the IDM model is calibrated using the mean
parameter values across all trajectories in the training set, as described in Table 3.2. The process of
training and testing dataset handling is illustrated in Figure 3.4.

Incorporating Style-specific embeddings into Testing: For the Style Transformer, how-
ever, group-specific average embeddings are employed, as illustrated in Figure 3.4. The testing dataset
is divided into two subsets: 30% of the data is used for learning driving styles. Since these trajectories
span 90 seconds, they provide more stable and informative representations for style learning. To avoid
bias when computing the average style token for each group, 30% of the data from each group is evenly
sampled. Meanwhile, clustering is performed using the trained style embedder and the k-means algo-
rithm based on the training dataset, which offers group IDs for each vehicle. Finally, the mean style
embedding for each group (derived from the training set) is calculated and directly provided to the style-
aware CF model, skipping the embedder stage. In this setup, the tokens obtained from training act as
global style priors—their group identities, rather than the tokens themselves, are used in subsequent
steps.

During testing, the tokens are re-estimated from the Style-Learning subset (30% of the test data)
under fixed cluster assignments to achieve stable style representation, while avoiding any data leakage
from the testing.

Note, the training dataset covers all vehicle IDs present in the test data, thereby preventing situa-
tions where the driving style of a specific trajectory remains unidentified in the clustering process based
on training dataset. Further details regarding model inputs and outputs can be found in Table 3.3.
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Figure 3.5: Calibrated parameter distribution of IDM

Parameter ’Ug Al’o hO Amax b

Zen-data Calibrated Values 24.70m/s 1.70m 1.19s 170m/s?> 2.53m/s>

Table 3.2: Calibrated IDM parameters on Zen-traffic Data

3.4.4. Benchmark models
Three models are considered in this study: the rule-based Intelligent Driver Model (IDM), a Long Short-
duration Memory (LSTM) network, and a Transformer-based model.

IDM

The IDM serves (Treiber et al., 2000) as a baseline, simulating acceleration based on current velocity,
spacing, and leader speed. It is interpretable, grounded in domain knowledge, and its five parame-
ters directly reflect driving style, but it only supports one-step prediction. For details, see Appendix

Intelligent Driver Model.

To avoid using an uncalibrated IDM and drawing biased conclusions about the proposed model,
the IDM is calibrated using the same training dataset.

Calibration is performed per car-following (CF) pair using the genetic algorithm (Mitchell, 1996),
meaning the algorithm searches for the best-fitting parameter set for each CF pair individually. The
detailed procedure of the genetic algorithm is omitted here, as it falls outside the scope of this study.

This calibration yields a distribution of IDM parameters across all CF pairs, as shown in Figure 3.5.
It can be roughly observed that the parameters calibrated through IDM are scattered, indicating that
driving behaviors are heterogeneous in this dataset. Since IDM serves as the benchmark model for
comparison with the model proposed in this study, we use the average parameter values to represent

an idealized average driver.

To ensure a fair cross-model comparison, the IDM is constrained to adopt uniform parameters
across all CF pairs, as is also the case for the other benchmark models. Instead, the average values
from the parameter distribution are adopted as the final IDM setting. This calibrated IDM will serve
as the benchmark model in the following analysis.

In total, 1000 trajectories are used for calibration, which are randomly sampled from the training
dataset. Since the dataset is large and only the average parameter setting is required, calibration is
performed on this subset of trajectories.

LSTM
The LSTM model (Hochreiter and Schmidhuber, 1997) uses a 6-second historical window with fea-
tures including vehicle velocities, spacing, and lengths to account for heterogeneous vehicle types. In
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this thesis, the hidden states are used as outputs and further compressed by a linear layer into a one-
dimensional time series representing the predicted acceleration. However, the model cannot access
future leader behavior due to the sequential structure, limiting its long-duration prediction ability. For
details, see Appendix LSTM Model and the architecture can be found in Table A.3.

Transformer

The Transformer model (Vaswani et al., 2017) extends this by incorporating future leader behavior
through a label window while masking follower movements to prevent data leakage. It enables longer
prediction horizons and better handles long-range dependencies, though it requires careful input seg-
mentation and masking design. However, it doesn’t take driving style into consideration in its architec-
ture and is unable to offer any insights into driving style. For details, see Appendix Transformer Model,
and the architecture can be found in Table A.2.

3.4.5. Overview of Models

An overview of the hyperparameters, along with the model inputs and outputs, is provided in Table 3.3.

LSTM Transformer Style-aware CF IDM
Parameter
Hyper-parameter Setting

Learning rate 0.001 0.001 0.001 -
Batch size 64 64 64 -
Epochs 20 30 30 -
Dropout 0.0 0.1 0.1 -
Activation Function Sigmoid ReLU ReLU -
Maximum Norm Value 10.0 10.0 10.0 -
Optimizer Adam Adam Adam -

Data Segmentation Setting (seconds)

Prediction window (7}yeq) 2 4 4 0.1
History window (Ti,ist) 6 6 6 0.1
Label window (Tiape1) - 4+4 4+4 -
Style window (Ti;s:) - - 6 -
Features

History window(input) of' Av, Az, 1F1F oF ol Ax
History Label window (input) - ol of -
Future Label window (input) - ol () -
Style Series (input) - - (7, h, Az, vF) -
Prediction window (output) at’ af’ af at’

Table 3.3: Detailed parameters in training process ((v*" ) T, indicates the average value of v¥ in the history window)

Note that IDM requires the parameters as well. The parameters are shown in the Table 3.2.



Field Data

This thesis seeks to examine the mechanisms underlying congestion formation as influenced by the
interaction between various driving styles. Therefore, a robustly trained, style-specific data-driven
car-following model is essential as the foundation of this investigation. This necessitates the use of
high-caliber training data. The current chapter will elucidate the methodology for obtaining a reliable
dataset.

4.1. Data Requirements and Source

4.1.1. Data Requirements
To guarantee that the data fully meets the requirements for subsequent tasks, two key requirements
must be satisfied:

« Consistency: Accurate position and speed must be reliably derived from the acceleration values,
ensuring that the trajectories are kinematically plausible.

» Car-following: All leader—follower pairs must genuinely be engaged in a car-following relation-
ship, such that the follower’s behavior reflects a response to the leader’s actions.

These two requirements are critical for training and testing a car-following model. With accel-
eration as the output and position-based loss (assuming a kinematic model inside the loss function),
consistency is essential to avoid invalid supervision. Likewise, genuine car-following interactions must
be ensured; otherwise, if the leader and follower are effectively uncoupled, the model cannot learn
meaningful behavior.

4.1.2. Data Source
The Zen traffic dataset contains vehicle trajectory data collected on Osaka motorways, covering a range
of traffic states from free-flow to congestion (Figure B.1 and Figure B.2). This diversity enables compre-
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hensive training data for car-following models. The dataset also includes lane-change events and road
layouts, supporting future research.

However, inconsistencies exist (Section Processing: Data Consistency), and real-world motorway
factors—such as lane changes and off-ramp entries—may interfere with pure car-following dynamics.
Thus, rigorous filtering is essential to isolate relevant trajectories.

The dataset spans three routes in Osaka: Route 4 (5 scenes), Route 11 (5 scenes), and Route 13 (6
scenes). While each route varies in geometry, all feature merging sections and diverse traffic conditions,
making them suitable for studying car-following behavior across traffic regimes.

Data from a section of Route 13 using the Moving Light Guide System (MLGS) is excluded to avoid
bias. Road slopes and detailed geometries are beyond this study’s scope.

Finally, The Zen dataset provides detailed road geometry and ramp locations, enabling the exclu-
sion of trajectories in weaving areas where merging behavior introduces uncertainty. Lane ID informa-
tion, which reflects lane-changing behavior, is available but not utilized in this study.

4.2. CF-related Trajectories Extraction (Segmentation)

Table 4.1: Filtering for extracting valid car-following data

Filters Description

No weaving area Trajectories that pass through weaving areas are excluded.
No lane change in fol- The follower in a car-following pair must not change lanes
lower during the selected time window.

No MLGS system Trajectories passing through the MLGS area while the sys-

tem is enabled are excluded.

To prepare uniform-length samples for model training, the remaining trajectories are segmented
after initial filtering. Raw trajectories often include disruptions from lane changes or other maneuvers
(Table 4.1), disrupting car-following continuity. Varying durations of the vehicle trajectories also hinder
the unified data format, which is ideal for training.

To address this, we extract fixed-duration segments with either fixed or randomized step sizes to
balance sample diversity and redundancy. Each segment includes a time series of both target and leader
vehicles and is filtered for quality.

As the output of the segmentation algorithm, the extracted dataset format is shown as Table B.1.
Note that, since the raw dataset doesn’t comprise the acceleration data, and considering the Kalman
filtering will be applied in the next step, the acceleration will be introduced and derived using the Fig-
ure A.1.

Since the Zen-traffic trajectory data is collected at different times and date, there are multiple tra-
jectory dataset on one route. Eventually, this data is concatenated into a single dataset. Eventually,
a substantial number of valid CF trajectory pairs were collected. In total, 3 different datasets are ex-
tracted, a 30-second one is later used for the training and validation process (see Section Model Train-



4.3. Segmented Car-following Data Overview 27

ing), and a 90-second (long-duration) one is applied in testing (see Section Car-following Simulation:
Recursive Prediction). The format of the extracted data is shown in Table B.1.

4.3. Segmented Car-following Data Overview
Various factors can affect data quality during collection, particularly for trajectories extracted from
video footage. To assess the reliability of the dataset, the

Speed and Acceleration Profile
Speed distribution is an indicator to examine the traffic states in the dataset. Ideally, the dataset is
required to include various traffic states, such as free-flow and congestion.

As shown in Figure 4.1, most vehicles operate at relatively low speeds, with an average speed of
46.8 km/h. This observation is consistent with the speed contour plots presented in Figure B.1 and
Figure B.2, which indicates that congestion frequently occurs on the studied road segment. The align-
ment between the speed distribution and the observed traffic conditions supports the conclusion that
the dataset captures a broad spectrum of traffic states, ranging from congested low-speed flows to free-
flow high-speed conditions. Such variability is beneficial for model training, as it enables learning
across diverse traffic scenarios.

Acceleration is not directly available in the raw dataset, which contains only vehicle positions and
velocities. Consequently, acceleration must be derived from the recorded velocity profiles using for-
ward differentiation (see Figure A.1). Given that the data originates from video footage, it is likely that
position is the only directly observed variable, while velocity is computed through additional tempo-
ral processing. As a result, the derived velocity—and subsequently the acceleration—may be affected
by noise. Therefore, analyzing the distribution of acceleration, particularly identifying abnormal or
extreme values, is essential for assessing the quality and reliability of the dataset.

As shown in Figure 4.1, the acceleration values fall within a reasonable range, indicating that the
dataset does not suffer from severe issues with abnormal values—an observation consistent with em-
pirical traffic studies that report typical acceleration values within (-8, 5) m/s2 (Montanino and Punzo,
2015).

Consistency

However, while data-driven models typically output acceleration, model validation is usually performed
using position and velocity. This requires the dataset to maintain kinematic consistency to ensure re-
liable derivation of these variables. Thus, kinematic inconsistency between acceleration, velocity, and
position, which can hinder the training process, remains a concern. To address this, Section Processing:
Data Consistency will introduce a method for improving consistency to an acceptable range.

Car-following or not: trajectory examples
To validate the extracted dataset, two representative trajectories (Figure 4.2) were selected for detailed
examination to identify and analyze potential issues within the current data.

The left panel clearly demonstrates a car-following behavior, characterized by a noticeable lag in
the follower’s velocity relative to the leader’s, indicating that the follower is actively responding to and
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Figure 4.1: Acceleration and speed distribution (both leader and follower)

mimicking the leader’s actions. The inter-vehicle gap remains within a reasonable range, further sup-
porting this interpretation. The calculated time headway for the follower is approximately 1.2 seconds,

which aligns well with typical car-following conditions.

Conversely, the right panel reveals a scenario where such a car-following relationship is absent.
The follower’s velocity shows little correlation with the leader’s behavior, and the gap between the ve-
hicles steadily increases over time. This pattern suggests external influences on the follower, such as
interference from lane-changing vehicles or an impending lane change due to proximity to an off-ramp.
The follower’s time headway in this case is significantly larger, approximately 2.89 seconds, reinforcing
the conclusion that the vehicles are not engaged in car-following.

These contrasting cases underscore the importance of filtering the dataset to exclude trajectories
where genuine car-following is not observed.