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City development
● More urbanization 

and (hence) more traffic jams

● Automatic driving

● More data and computing power to 
organise streams

● But that is no solution to everything
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Speed of traffic

● Drivers and cars optimize their own speed

● Locally: the more traffic, the lower the speed

● Impossible to use all data

● Try to combine data in a clever way
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Speed of traffic
● Fast and accurate description of 

traffic in an entire city

● Test the relationship between 
average speed in a city and the 
amount of cars

● Collaboration with 
Google (data) and Amsterdam

● Facilitated by AMS

● Yield accurate 
predictive results

● Useful for routing, or
allowing people onto the road
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Floating Car Data
● Vehicles broadcast where they are
● Combination of loops and

Floating Car Data (FCD) works well
● FCD gives speeds on many points
● Loops indicate amount of vehicles
● Flows are essential to prediction and hence to 

control traffic
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Revloutionarize measuring traffic
● Measure position of some vehicles

and their overtaking
● Combine this for different classes of vehicles 

(different speeds), and you know the number of 
vehicles between these vehicles, so density
(and speed and intensity)

● With 1% of traffic already very good results in 
simulations

● Next steps: implement in practice
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Traffic measured with FCD
● If necessary, combine with loops so that there is 

always one fixed point
● High vehicles and other speed help
● Combine with traffic in the other direction

distance

Time
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Traffic measured with FCD
● Measure position of some vehicles

and their catching up movements
●
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● Quick, automated deliveries

● No congestion

● Goods and people

● Many drones

Next step: drones?
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● Too many drones 
for centralized control

● Imagine that all car traffic 
would be centrally controlled…

● We’ll need traffic rules & traffic regulations:

– Road types

– Priority

– Traffic lights 

● Stand-alone solutions, so:

– No centralized computing unit addressing all 
drones

Controlling drone traffic
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● Stand-alone solutions, so:

– No centralized computing unit

– No collaborations

● Pass in a clever way

● Using positions of other drones
(assumed perfect sensing – could be by information 
exchange)

● Based on pedestrian models,
but adapted for relative speeds

Drone path predictions
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● Two clouds of drones crossing

Setup
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● Two clouds of drones crossing

●

Movement
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Even further in the future?
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