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Introduction

* More urbanisation
* (Hence) more traffic and traffic jams

* Automated driving
(requires and generates data)

* More data and more computing power ’
e Can data be the solution to the main questions in transport?



How to study traffic

* Theoretical approaches
* Cellular automata

e Simulation models
 (simplified to have the right mathematical properties)

* First data points
e “We need more data”
e We now have

e Data driven methods
* No need for domain knowledge




From data poor to data rich

-When | started:

“Our field I1s data poor and assumption rich”

.This has changed in the meantime...

All traffic Is observed by loop detectors or cameras

.Helicopters and drones

.Vehicles share their position (and speed)
~__‘'~hicles sense their surroundings
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Value of data

* Only what is new (speed sampling at 100MHz?)

* Only what adds to the knowledge base (another day of the same
data?)

 What can we forget?
* What should we value

 What should we collect more



Example 1: car-following near traffic lights

* How do people approach traffic lights?
e Data: radars near a traffic light, detecting individual cars



Following Leader Status [ Radar

Available data - oy -

i

* Radar data at traffic light,
used to analyze how people interact

* the vehicle in front
* the traffic light

e Various “known” models and a data-driven model
* Enabled us to find most relevant parameters
e And a mixture model
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Smart use of big data

Y270 LONIAENCE Interval
© Training Data

* Most important:
* Speed difference
* Spacing
* Traffic light color
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Macroscopic traffic predictions
and the limit of predictability



The role of traffic predictions

.Informing people on the traffic state is useful
.Different compared to weather predictions:
the weather is not influenced by the predictions §
.Predictions can be used to

-Advise travellers on postponing/cancelling trip
-route traffic

-Advise drivers on unsafe situations

~Advise drivers to actively do something

(e.g., change lanes)

-Intervene in automated vehicle

(predictions on a different scale?)
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Common traffic prediction

.Up to 15 years ago: traffic model

.Since then: data-driven methods

.E.g., train a neural network

(because it can do anything)

-Problem: it learns what we already knew
-Or If designed poorly, it does worse

Hidden
Input
Output
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Example

. Traffic data is much available

. Learn how the traffic states evolves from one state to
the next

. Long training times

. Limit influence to next-neighbor detectors

. Traffic information goes upstream and downstream

. That should be included, if not, predictions are bad

. Limit to next neighbor at each side:

back at cell transmission model which was already
known
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Which information to include

.Speed of information is limited, we know from
decades of traffic flow theory

.No need to include all observations:

limit In space and time

%
TUDelft



5 different inclusion possibilities
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Results

.Self Is worst (least information)
.congestion travels upstream, so:
-Upstream hardly gives
iInformation

-Downstream cone gives more
iInformation than just the edge (so
different speeds of information)
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Limits to predictability
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Errors and unknowns

.Every deviation from our prediction Is an error
.Deterministic view: improve prediction further and
you’ll end up without an error

. Traffic engineering mind: collect more data, fit more
refined models and improve

At first: limit in predicting traffic state more than
~30 mins ahead

.Natural limit: length of the trip
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Errors due to model or in process

.Consider dice: that is hard to predict well

.The process itself Is stochastic, and no deterministic
model can make a good prediction

.Collecting more data will not help in accurately
predicting dice

.Question: are errors In traffic of the nature of dices or
because of badly chosen models?
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. ower bound of model error

.Regardless of model, check the uncertainty in the

data

.Possible due to the amounts of data available
.Use entropy to find this:

-Find similar traffic states

-Check how the future diverges

.Compare the minimum with the best models
.Do so for

-Deterministic models (= predicting one value)
-Stochastic models (=probabilistic models)
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. ower bound of model error

Network: Lower speed Iimit/ﬁ_‘\
Rotterdam O\l WA 4
ca 500,000 inhabitants 1 sortrend o1 3R] |
~3-4 lane freeway L\\ 2% X
ca 10x10 km o

.2 test cases:
-Nr of vehicles in the full network (1 dimension)

-Speeds at all locations (35 dimensions)
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Lower bound of single variate

.For stochastic models, the assumed distribution
matters...but has little effect
.Close to lower bound with current approaches
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Lower bound multi-variate model

.Speed at all locations
.Lower bound depends on traffic state:

sometimes (In peak periods) states are uncertain
(mostly near traffic breakdown)
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Prediction should be a distribution

.Up to now: next speed(s) have been predicted
.Error as a value or a likelihood in a pdf that the right
value has been predicted

-We know now that traffic predictions are inherently

stochastic

.Therefore, let’s predict the probabilities for a single
prediction

Example: current L output
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Two types of uncertainty

Aleatoric — process is random (from alea, die
Even rolling many, many times,
we can never predict dice

.Epistemic — we do not know enough
One (or zero) observations of an unknown case gives
not sufficient information
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Example
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How does this work for traffic

prediction

.Quantify the sources of uncertainty

due to each cause

.Test on speed prediction for ringways around
Amsterdam

-193 links

~-Network

-2X 1 month of data

-1 minute aggregate
-Prediction: 4-20 minutes ahead
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Resulting uncertainties
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.Uncertainties increase with increasing time horizon

(as expected)
. Total uncertainty almost fully caused by aleatoric

5 uncertainty (very interesting new finding)
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More data?

.S0me very rare cases contribute to uncertainty
.4 cases In 2022, 7 cases in 2019

.These are very rare events; more data of these,
whatever they are, would be useful

.Typically, rare events happen not often

(that iInformation actually contains information :)
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How do they depend on speed?

RN

Alurelaoun olio01es|y

Speed (km/h)

.For high speeds: certain (speeds will remain high)
.For low speeds: certain (speeds will remain low)
.Near critical speed: highest uncertainty

TU Delft (might go into breakdown)




How do they depend on location?

-We tracked all links and considered where the highest
uncertainty came from

-Highest uncertainty near onramps causing jams
(another indication that the start of a traffic jam gives
highest uncertainty)
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Microscopic data

e Similar methodology to car-following data set of autonomous vehicles
* >90% of the data consists of “the same”

e Qutliers are rare, yet hence very valuable

e Easy distinction in hindsight

e Automated driving can focus on the >90%

* Challenge is to determine the remaining part on beforehand
(difficult)

* Mixture models combining data driven and model based traffic are an option



Lane change detection from GPS
data



Using GPS data to find lane changes

* Finding lanes is hard and requires data fusion including detector data,
we know from Arman

* Lane changes might be easier, since the errors in absolute position
might be correlated



O a d St r e t C ‘ l 10ef Hilversum { E
: = e \'\ @
N2t » A
» T . [N199 !
v @ Baarn J
iy 4 Hooge A
[ ) ~J Nieuw- Vaursche=———" ] VATHORST
I I I cht Loosdrecht \ {
| |
L’#“ﬂ it \,l oogland N \ Haogh
o AND W, ) o R
NOORDHOLL .............. - / Lage Vuursche N3 ‘,,\
CHT g -
UHE / Soest “ o
27 PIINENEURG ) e ‘

Amersfoort r
jj Stou

* 3 |lanes

* Relatively few
on and off ramps
|
Biithoven : | .{, -

&




Di

stance vehicle to Centerline 07

468000 4

Data sources

467000

466000

e 1Hz GPS data from phones
Flitsmeister

464000

463000

* For ground truth:

—— D40C8686-4C4A-4523-A22B-EF2A5517EEBF
—— 1d130f55-0ddd-4631-88d3-317d5ed60c3c
—— 1E2BO0BB-5F1B-4295-9F2A-4088E2693E3E
—— 5F50CBA2-614A-4D9B-9DBB-796795797F89
—— DE901EA6-AD67-4249-811C-3096E3AB0654
——— 6FD9859A-94DC-446C-B977-8B5B09090F9C
F292A765-A8BF-43FF-B952-96825D63CD8A
—— b62df9e6-db51-4703-b846-bea5bcof8lle

individual loop detector datz
* Approximately 1 month of data
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Lane change detection: algorithmic

e Consider the heading of the vehicle
compared to the road axis

* For 3 subsequent time steps (seconds) it should change in
either the positive or negative direction

e Besides, the total rotation in these 3 4 seconds
should be at least 6 degrees

* Results exceed flipping a coin (but not by much)

YES lane change Loop detector method | 1024 15365
NO lane change Loop detector method | 732 16283

| YES lane change Delta heading method | NO lane change Delta heading method



Data driven

* Data preparation
e equal number of data points
* Analysis balanced for number of occurrences

e Random forest on features

* Features: speed, x-distance, y-distance,
heading, heading difference to previous data point,
heading difference to the centerline

* only instantaneous, hence no subsequent time steps



Data driven

e 4 models:

Labels

Yes / No

Left / No / Right

Left / No + Right

Right / No + Left




Data driven

e 4 mndelc-

Labels Testing Accuracy | Validation Accuracy
Yes / No 60.61 % 62.02 %
Left / No / Right | 48.84 % 50.89 %
Left / No + Right | 63.98 % 61.10 %
Right/ No + Left | 64.50 % 60.26 %

» Data driven exceeds algorithmic methods, even without previous time
steps

* Most important features:
* the heading of the vehicle,
* the lateral distance between the vehicle and the centerline of the road

* Clear improvement over coin flipping
* Combining headings increases correctness



Finding traffic densities



Introduction

* Macroscopic traffic states are often estimated by using data from loop
detectors

* Aim of (Dutch) road authority is to phase out as much road side
equipment as possible

* With floating car data speeds are easily found

* Number of vehicles (flows/volumes/intensities or
density/accumulations) are harder



Method

* Determine a penetration rate and multiply by the penetration rate
(penetration rate = fraction of drivers sending information)

* Use the speeds to — once calibrated — determine the flow
e (Mermygka and Knoop)

Works quite OK for larger areas, yet for a single road not ideal



Simple methods
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Uncertainty
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Value of relative flow data
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Measuring traffic via vehicles

« Combination of loops and Floating Car Data (FCD)
works well

« FCD gives many speeds

« Loops give flows
(“intensities”, volume ie. number of vehicles)

« Flows are essential for traffic prediction

« Speeds do not (at all) indicate whether traffic is
near breakdown or in free flow
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Measuring traffic via vehicles
Measure the position of some vehicles,
as well as their overtakings
Data: in-vehicle sensors
Combine this for various vehicles, and you can
derive the number of vehicles in between.

This gives densities, speeds and flows
Distanc

e
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Measuring traffic via vehicles

« Potentially combine with loops to have a fixed point
Zero

 All traffic should be counted

« A moving observer can contribute more than a fixed
observer

« Combine with traffic in opposing direction

b
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Time Time Time

(a) Observer speed = 0 m/s, v/ -wave. (b) Observer speed = v/ m/s, v/ -wave. (c) Observer speed = —v/ m/s, v/ -wave.
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Conclusions relative flow data

« Sharing “relative flow data” (overtaking times) can
yield a very good traffic estimate

« Even with low penetration rates already good traffic
state estimation

« Best results If also opposing traffic Is also included

« Also works In urban areas (currently no/few loops)
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Overall conclusions

« There iIs plenty of data available (and more will
come)

. Many data Is data of the same

« We can learn recurrent processes
(and we already do quite well)

« For rarer events, physical insights remain
necessary

S7
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