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Big data needs 
big brains: using 
new data sources 
in traffic 
engineering 



Introduction

• More urbanisation

• (Hence) more traffic and traffic jams

• Automated driving 
(requires and generates data)

• More data and more computing power

• Can data be the solution to the main questions in transport?



How to study traffic

• Theoretical approaches

• Cellular automata

• Simulation models
• (simplified to have the right mathematical properties)

• First data points

• “We need more data”

• We now have

• Data driven methods
• No need for domain knowledge



From data poor to data rich

●When I started: 
“Our field is data poor and assumption rich”
●This has changed in the meantime...
●All traffic is observed by loop detectors or cameras
●Helicopters and drones
●Vehicles share their position (and speed)
●Vehicles sense their surroundings
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Value of data

• Only what is new (speed sampling at 100MHz?)

• Only what adds to the knowledge base (another day of the same 
data?)

• What can we forget?

• What should we value

• What should we collect more



Example 1: car-following near traffic lights

• How do people approach traffic lights?

• Data: radars near a traffic light, detecting individual cars



Available data

• Radar data at traffic light,
used to analyze how people interact 

• the vehicle in front 

• the traffic light

• Various “known” models and a data-driven model

• Enabled us to find most relevant parameters

• And a mixture model



Smart use of big data

• Most important:
• Speed difference

• Spacing

• Traffic light color

• Model decision on the use 
of data prediction or rule 
based model



Macroscopic traffic predictions

and the limit of predictability



The role of traffic predictions

●Informing people on the traffic state is useful
●Different compared to weather predictions:
the weather is not influenced by the predictions
●Predictions can be used to
–Advise travellers on postponing/cancelling trip
–route traffic
–Advise drivers on unsafe situations
–Advise drivers to actively do something 
(e.g., change lanes)
–Intervene in automated vehicle
(predictions on a different scale?)



Common traffic prediction
●Up to 15 years ago: traffic model
●Since then: data-driven methods
●E.g., train a neural network 
(because it can do anything)
–Problem: it learns what we already knew
–Or if designed poorly, it does worse



Example
● Traffic data is much available
● Learn how the traffic states evolves from one state to 
the next
● Long training times
● Limit influence to next-neighbor detectors
● Traffic information goes upstream and downstream
● That should be included, if not, predictions are bad
● Limit to next neighbor at each side:
back at cell transmission model which was already 
known



Which information to include
●Speed of information is limited, we know from 
decades of traffic flow theory
●No need to include all observations:
limit in space and time



5 different inclusion possibilities



Results
●Self is worst (least information)
●congestion travels upstream, so:
–Upstream hardly gives 
information
–Downstream cone gives more 
information than just the edge (so 
different speeds of information)



Limits to predictability



Errors and unknowns
●Every deviation from our prediction is an error
●Deterministic view: improve prediction further and 
you’ll end up without an error
●Traffic engineering mind: collect more data, fit more 
refined models and improve
●At first: limit in predicting traffic state more than 
~30 mins ahead
●Natural limit: length of the trip



Errors due to model or in process
●Consider dice: that is hard to predict well
●The process itself is stochastic, and no deterministic 
model can make a good prediction
●Collecting more data will not help in accurately 
predicting dice
●Question: are errors in traffic of the nature of dices or 
because of badly chosen models?



Lower bound of model error
●Regardless of model, check the uncertainty in the 
data
●Possible due to the amounts of data available
●Use entropy to find this:
–Find similar traffic states
–Check how the future diverges
●Compare the minimum with the best models
●Do so for
–Deterministic models (= predicting one value)
–Stochastic models (=probabilistic models)



Lower bound of model error
●Network:
Rotterdam
ca 500,000 inhabitants
●~3-4 lane freeway
ca 10x10 km 

●2 test cases:
–Nr of vehicles in the full network (1 dimension)
–Speeds at all locations (35 dimensions)



Lower bound of single variate
●For stochastic models, the assumed distribution 
matters…but has little effect
●Close to lower bound with current approaches



Lower bound multi-variate model
●Speed at all locations
●Lower bound depends on traffic state:
sometimes (in peak periods) states are uncertain
(mostly near traffic breakdown)



Prediction should be a distribution
●Up to now: next speed(s) have been predicted
●Error as a value or a likelihood in a pdf that the right 
value has been predicted
●We know now that traffic predictions are inherently 
stochastic
●Therefore, let’s predict the probabilities for a single 
prediction

Example: current
state
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Two types of uncertainty
●Aleatoric – process is random (from alea, die)
Even rolling many, many times,
we can never predict dice 

●Epistemic – we do not know enough
One (or zero) observations of an unknown case gives 
not sufficient information



Example

●Many observations around x=0, 
but unknown process, so uncertain (aleatoric)
●Few observations at boundary, 
so uncertain (epistemic)



How does this work for traffic 
prediction

●Quantify the sources of uncertainty 
due to each cause
●Test on speed prediction for ringways around 
Amsterdam
–193 links
–Network
–2x 1 month of data
–1 minute aggregate
–Prediction: 4-20 minutes ahead



Resulting uncertainties

●Uncertainties increase with increasing time horizon 
(as expected)
●Total uncertainty almost fully caused by aleatoric 
uncertainty (very interesting new finding)



More data?

●Some very rare cases contribute to uncertainty
●4 cases in 2022, 7 cases in 2019
●These are very rare events; more data of these, 
whatever they are, would be useful
●Typically, rare events happen not often
(that information actually contains information :)



How do they depend on speed?

●For high speeds: certain (speeds will remain high)
●For low speeds: certain (speeds will remain low)
●Near critical speed: highest uncertainty 
(might go into breakdown)
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How do they depend on location?

●We tracked all links and considered where the highest 
uncertainty came from
●Highest uncertainty near onramps causing jams 
(another indication that the start of a traffic jam gives 
highest uncertainty)



Microscopic data

• Similar methodology to car-following data set of autonomous vehicles

• >90% of the data consists of “the same”

• Outliers are rare, yet hence very valuable

• Easy distinction in hindsight

• Automated driving can focus on the >90%
• Challenge is to determine the remaining part on beforehand

(difficult)

• Mixture models combining data driven and model based traffic are an option



Lane change detection from GPS 

data



Using GPS data to find lane changes

• Finding lanes is hard and requires data fusion including detector data, 
we know from Arman

• Lane changes might be easier, since the errors in absolute position 
might be correlated



Road stretch

• ~13 km

• 3 lanes

• Relatively few 
on and off ramps



Data sources

• 1Hz GPS data from phones
Flitsmeister

• For ground truth: 
individual loop detector data

• Approximately 1 month of data



Filtering

• Using individual loop detector data

• Arman & Tampere



Lane change detection: algorithmic

• Consider the heading of the vehicle 
compared to the road axis

• For 3 subsequent time steps (seconds) it should change in 
either the positive or negative direction

• Besides, the total rotation in these 3 4 seconds 
should be at least 6 degrees

• Results exceed flipping a coin (but not by much)



Data driven

• Data preparation
• equal number of data points

• Analysis balanced for number of occurrences 

• Random forest on features

• Features: speed, x-distance, y-distance, 
heading, heading difference to previous data point, 
heading difference to the centerline

• only instantaneous, hence no subsequent time steps



Data driven

• 4 models:



Data driven

• 4 models:

• Data driven exceeds algorithmic methods, even without previous time 
steps

• Most important features: 
• the heading of the vehicle,
• the lateral distance between the vehicle and the centerline of the road

• Clear improvement over coin flipping
• Combining headings increases correctness



Finding traffic densities



Introduction

• Macroscopic traffic states are often estimated by using data from loop 
detectors

• Aim of (Dutch) road authority is to phase out as much road side
equipment as possible

• With floating car data speeds are easily found

• Number of vehicles (flows/volumes/intensities or 
density/accumulations) are harder



Method

• Determine a penetration rate and multiply by the penetration rate
(penetration rate = fraction of drivers sending information)

• Use the speeds to – once calibrated – determine the flow

• (Mermygka and Knoop)

Works quite OK for larger areas, yet for a single road not ideal



Simple methods



Results



Uncertainty



Deviations & accuracy

• Works mostly relatively well

• Breaks if local disruptions 
due to e.g. accident



Value of relative flow data
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Measuring traffic via vehicles
⚫ Combination of loops and Floating Car Data (FCD) 

works well

⚫ FCD gives many speeds

⚫ Loops give flows 

(“intensities”, volume ie. number of vehicles)

⚫ Flows are essential for traffic prediction

⚫ Speeds do not (at all) indicate whether traffic is 

near breakdown or in free flow
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Measuring traffic via vehicles
⚫ Measure the position of some vehicles,

as well as their overtakings

⚫ Data: in-vehicle sensors

⚫ Combine this for various vehicles, and you can 

derive the number of vehicles in between. 

⚫ This gives densities, speeds and flows
Distanc

e

Time
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Measuring traffic via vehicles
⚫ Potentially combine with loops to have a fixed point 

zero

⚫ All traffic should be counted

⚫ A moving observer can contribute more than a fixed 

observer

⚫ Combine with traffic in opposing direction
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Measuring traffic via vehicles
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Conclusions relative flow data
⚫ Sharing “relative flow data” (overtaking times) can 

yield a very good traffic estimate

⚫ Even with low penetration rates already good traffic 

state estimation

⚫ Best results if also opposing traffic is also included

⚫ Also works in urban areas (currently no/few loops)
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Overall conclusions
⚫ There is plenty of data available (and more will 

come)

⚫ Many data is data of the same

⚫ We can learn recurrent processes

(and we already do quite well)

⚫ For rarer events, physical insights remain 

necessary
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