From data poor to data rich: using AI and why traffic engineers should not forget to think

dr. Victor L. Knoop; based on joint work with Guopeng Li February 2022

TU Delft Transport

- Education and research
- Top ranked for traffic engineering
- Various disciplines, all within the Transport Institute Delft
- Automated vehicles,
 Data & computing,
 Rail, Observations,
 Road traffic

Home	About ✓ Rank	ings - Survey -	Universities	GRUP	Initiative 🗸	Conferen	
hanghaiR	_	nic Subjects 2019>> Tra al Ranking of Ac	•			ion 2019	
Field: Engi	eld: Engineering • Subject: Transportation Science & Technology				Methodology		
World Rank		Institution*	Count	ry/Region	Total Score	Score on PUB	
1	Beijing Jiaotong l	ı	*)	290.4	95.4		
2	Tsinghua Univers	ı	•)	282.1	85.2		
3	Delft University of			272.2	100.0		
4	Southeast Univer	ı	()	265.5	84.4		
5	University of Syde		₩.	239.1	76.7		
6	Tongji University	ı	0	238.1	83.8		
7	Massachusetts In	IIT)		235.0	71.0		
8	University of Britis		 + 	232.7	68.3		
9	University of Calif			232.5	76.6		
10	Shanghai Jiao Tong University			0	232.2	71.0	
						0	

About me

- Background as physicist in flows (MSc)
- Since 2004 in traffic engineering
- Associate professor at TU Delft
- Director of lab on traffic dynamics modelling and control

From data poor to data rich

- When I started:
 "Our field is data poor and assumption rich"
- This has changed in the meantime...
- All traffic is observed by loop detectors or cameras
- Vehicles share their position (and speed)
- Vehicles sense their surroundings

The role of traffic predictions

- Informing people on the traffic state is useful
- Different compared to weather predictions:
 the weather is not influenced by the predictions
- Predictions can be used to
 - Advise travellers on postponing/cancelling trip
 - route traffic
 - Advise drivers on unsafe situations
 - Advise drivers to actively do something (e.g., change lanes)
 - Intervene in automated vehicle (predictions on a different scale?)

Common traffic prediction

- Up to 15 years ago: traffic model
- Since then: data-driven methods
- E.g., train a neural network (because it can do anything)
 - Problem: it learns what we already knew
 - Or if designed poorly, it does worse

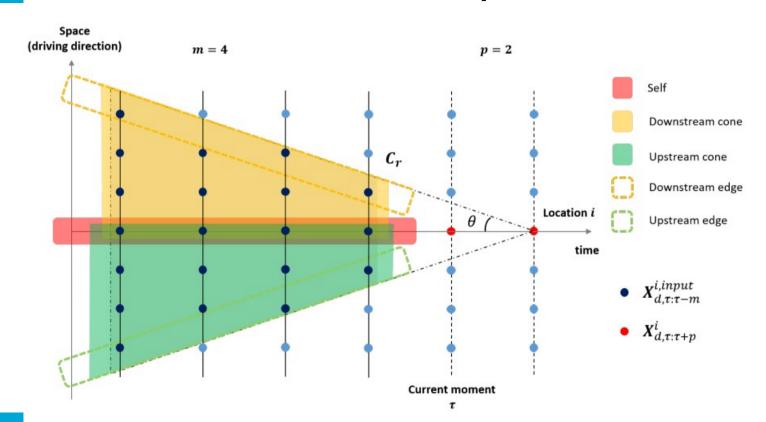
Example

- Traffic data is much available
- Learn how the traffic states evolves from one state to the next
- Long training times
- limit influence to next neighbor detectors
- Traffic information goes upstream and downstream
- That should be included, if not, predictions are bad
- Limit to next neighbor at each side: back at cell transmission model which was already known

Which information to include

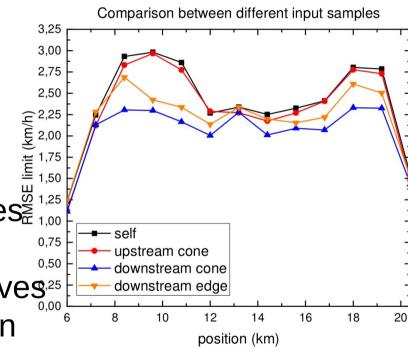
- Speed of information is limited, we know from decades of traffic flow theory
- No need to include all observations: limit in space and time

5 different inclusion possibilities



Results

- Self is worst (least information)
- congestion travels upstream, so:
 - Upstream hardly gives 1,30 information 0,75
 - Downstream cone gives²⁵
 o,00
 more information than
 just the edge (so
 different speeds)



Limits to predictability

Errors and unknowns

- Every deviation from our prediction is an error
- Deterministic view: improve prediction further and you'll end up without an error
- Traffic engineering mind: collect more data, fit more refined models and improve
- At first: limit in predicting traffic state more than ~30 mins ahead
- Natural limit: length of the trip

Errors due to model or in process

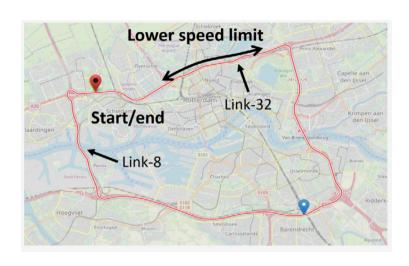
- Consider a dice: that is hard to predict well
- The process itself is stochastic, and no model can make a good prediction
- Question: are errors in traffic of the nature of dices or because of badly chosen models?

Lower bound of model error

- Regardless of model, check the uncertainty in the data
- Possible due to the amounts of data available
- Use entropy to find this:
 - Find similar traffic states
 - Check how the future diverges
- Compare the minimum with the best models
- Do so for
 - Deterministic models (= predicting one value)
 - Stochastic models (=probabilistic models)

Lower bound of model error

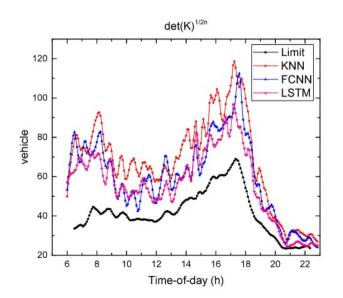
Network:
 Rotterdam
 ca 500,000 inhabitants
 ~3-4 lane freeway
 ca 10x10 km

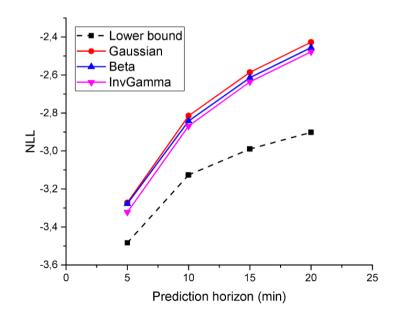


- 2 test cases:
 - Nr of vehicles in the full network (1 dimension)
 - Speeds at all locations (35 dimensions)

Lower bound of single variate

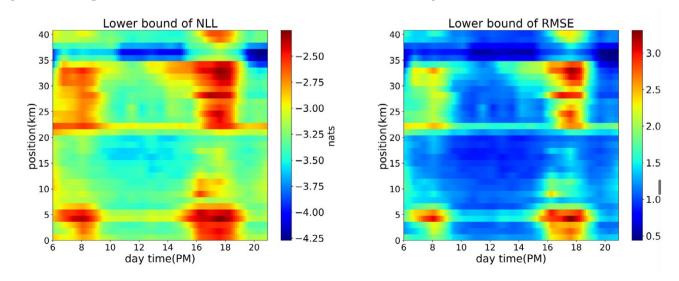
- For stochastic models, the assumed distribution matters...but has little effect
- Close to lower bound with current approaches





Lower bound multi-variate model

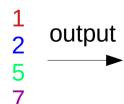
- Speed at all locations
- Lower bound depends on traffic state: sometimes (in peak periods) states are uncertain (mostly near traffic breakdown)



Prediction should be a distribution

- Up to now: next speed(s) have been predicted
- Error as a value or a likelihood in a pdf that the right value has been predicted
- We know now that traffic predictions are inherently stochastic
- Therefore, let's predict the probabilities for a single prediction

Example: current 2 state 5

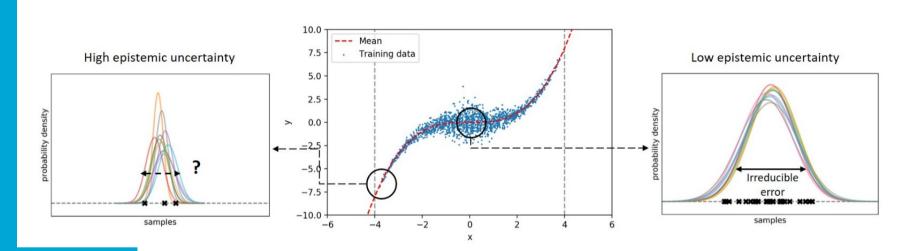


Two types of uncertainty

Aleatoric – process is random (from alea, die)
 Even rolling many, many times,
 we can never predict dice

Epistemic – we do not know enough
 One (or zero) observations of an unknown case gives not sufficient information

Example

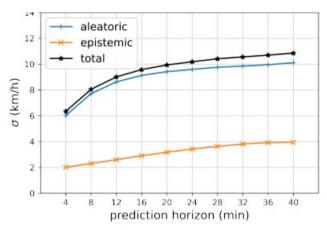


- Many observations around x=0, but unknown process, so uncertain (aleatoric)
- Few observations at boundary, so uncertain (epistemic)

How does this work for traffic prediction

- Quantify the sources of uncertainty due to each cause
- Test on speed prediction for ringways around Amsterdam
 - 193 links
 - Network
 - 2x 1 month of data
 - 1 minute aggregate
 - Prediction: 4-20 minutes ahead

Resulting uncertainties

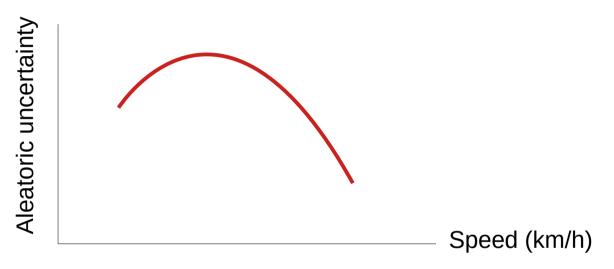


- Uncertainties increase with increasing time horizon (as expected)
- Total uncertainty almost fully caused by aleatoric uncertainty (very interesting new finding)

More data?

- Some very rare cases contribute to uncertainty
- 4 cases in 2022, 7 cases in 2019
- These are very rare events; more data of these, whatever they are, would be useful
- Typically, rare events happen not often (that information actually contains information :)

How do they depend on speed?



- For high speeds: certain (speeds will remain high)
- For low speeds: certain (speeds will remain low)
- Near critical speed: highest uncertainty (might go into breakdown)

How do they depend on location?

- We tracked all links and considered where the highest uncertainty came from
- Highest uncertainty near onramps causing jams (another indication that the start of a traffic jam gives highest uncertainty)

Conclusions

- Traffic prediction can in many cases be predicted by a data driven model
- Training it can take time; adding information on knowledge of traffic
 - simplifies the model
 - Makes predictions more reliable
 - Speeds up computation
- Traffic evolves with inherent uncertainty
- Sufficient data is generally available (no need for more data)
- Rare events are rare

References

- Li, G, Knoop, V.L., and Van Lint, H. (2022) Estimate the limit of predictability in short-term traffic forecasting: An entropy-based approach. Transportation Research part C, Vol 138, 103607
- Li, G. PhD thesis, Delft University of Technology Uncertainty Quantification and Predictability Analysis for Traffic Forecasting at Multiple Scales; Supervisors: Hans van Lint and Victor Knoop

