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About me

* Background as physicist in flows (MSc)
* Since 2004 in traffic engineering
* Associate professor at TU Delft
* Director of lab on
traffic dynamics modelling and control
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From data poor to data rich

* When | started:
“Our field is data poor and assumption rich”

* This has changed in the meantime...

* All traffic is observed by loop detectors or cameras

* Vehicles share their position (and speed)

* Vehicles sense their surroundings
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The role of traffic predictions

* Informing people on the traffic state is useful
* Different compared to weather predictions:
the weather is not influenced by the predictions
* Predictions can be used to
— Advise travellers on postponing/cancelling trip
— route traffic
— Advise drivers on unsafe situations
— Advise drivers to actively do something
(e.g., change lanes)
— Intervene in automated vehicle
FuDelft (predictions on a different scale?)




Common traffic prediction

* Up to 15 years ago: traffic model

* Since then: data-driven methods

* E.g., train a neural network
(because it can do anything)
— Problem: it learns what we already knew
— Or if designed poorly, it does worse

=7
TUDelft



Example

* Traffic data is much available

* Learn how the traffic states evolves from one state
to the next

* Long training times

* limit influence to next neighbor detectors

* Traffic information goes upstream and downstream

* That should be included, if not, predictions are bad

* Limit to next neighbor at each side:
back at cell transmission model which was already
known
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Which information to include

* Speed of information is limited, we know from
decades of traffic flow theory

* No need to include all observations:
limit in space and time
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5 different inclusion possibilities
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I aes u ItS Comparison between different input samples
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Limits to predictability
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Errors and unknowns

* Every deviation from our prediction is an error

* Deterministic view: improve prediction further and
you’ll end up without an error

* Traffic engineering mind: collect more data, fit more
refined models and improve

* At first: limit in predicting traffic state more than
~30 mins ahead

* Natural limit: length of the trip
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Errors due to model or In process

* Consider a dice: that is hard to predict well

* The process itself is stochastic, and no model can
make a good prediction

* Question: are errors In traffic of the nature of dices
or because of badly chosen models?
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L ower bound of model error

* Regardless of model, check the uncertainty in the
data
* Possible due to the amounts of data available
* Use entropy to find this:
— Find similar traffic states
— Check how the future diverges
* Compare the minimum with the best models
* Do so for
— Deterministic models (= predicting one value)
— Stochastic models (=probabilistic models)
FuDelft 5
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L ower bound of model error

Lower speed limit

Network:

Rotterdam

ca 500,000 inhabitants
~3-4 lane freeway

ca 10x10 km
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2 test cases:
— Nr of vehicles in the full network (1 dimension)

— Speeds at all locations (35 dimensions)
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Lower bound of single variate

* For stochastic models, the assumed distribution
matters...but has little effect
* Close to lower bound with current approaches
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Lower bound multi-variate model

* Speed at all locations

* Lower bound depends on traffic state:
sometimes (in peak periods) states are uncertain
(mostly near traffic breakdown)
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Prediction should be a distribution

* Up to now: next speed(s) have been predicted

* Error as a value or a likelihood in a pdf that the
right value has been predicted

* We know now that traffic predictions are inherently
stochastic

* Therefore, let’s predict the probabilities for a single
prediction

Example: current output

State
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Two types of uncertainty

* Aleatoric — process is random (from alea, die
Even rolling many, many times,
we can never predict dice

* Epistemic — we do not know enough
One (or zero) observations of an unknown case
gives not sufficient information
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High epistemic uncertainty Low epistemic uncertainty
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v
probability density

Irreducible
error

* Many observations around x=0,
but unknown process, so uncertain (aleatoric)

* Few observations at boundary,
SO uncertain (epistemic)
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How does this work for traffic

prediction

* Quantify the sources of uncertainty
due to each cause
* Test on speed prediction for ringways around
Amsterdam
— 193 links
— Network
— 2x 1 month of data
— 1 minute aggregate
— Prediction: 4-20 minutes ahead
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Resulting uncertainties
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* Uncertainties increase with increasing time horizon

(as expected)
* Total uncertainty almost fully caused by aleatoric
uncertainty (very interesting new finding)
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More data?

* Some very rare cases contribute to uncertainty
* 4 cases in 2022, 7 cases in 2019
* These are very rare events; more data of these,
whatever they are, would be useful
* Typically, rare events happen not often
(that information actually contains information :)

24



How do they depend on speed?

Aleatoric uncertainty

Speed (km/h)

* For high speeds: certain (speeds will remain high)
* For low speeds: certain (speeds will remain low)

* Near critical speed: highest uncertainty

fUDelft (might go into breakdown) .




How do they depend on location?

* We tracked all links and considered where the
highest uncertainty came from

* Highest uncertainty near onramps causing jams

(another indication that the start of a traffic jam
gives highest uncertainty)
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Conclusions

* Traffic prediction can in many cases be predicted
by a data driven model

* Training it can take time; adding information on
knowledge of traffic
— simplifies the model
— Makes predictions more reliable
— Speeds up computation

* Traffic evolves with inherent uncertainty

* Sufficient data is generally available (no need for
more data)

e Rare events are rare 27
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