A Macroscopic Fundamental Diagram for Airplane Traffic: Empirical Findings

Victor L. Knoop, Mark ter Heide, Joost Ellerbroek 26 July 2023 Traffic Flow Theory and Characteristics Midyear meeting

v.l.knoop@tudelft.nl

Contribution

- Original claim for the macroscopic fundamental diagram by Daganzo (2007): holds for many things, even your desk
- Modelled and tested for road traffic (many...)
- Other modes in city traffic also included (e.g., Loder, 2021cars & bikes)

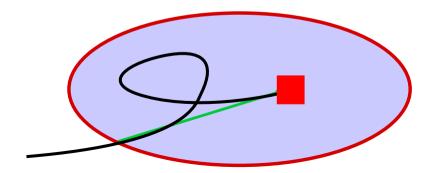
- Question: does this extend to 3 dimensional modes?
- With possibly a very large amount of airborne vehicles, can we change air traffic management to macroscopic models?

Introduction

 With many airborne vehicles, can air traffic management use to macroscopic models?

3D MFD models?

- Start of traffic models for drones and control thereof (e.g., Cummings et al, 2021)
- Control based on MFD (Haddad et al, 2022)
- Theoretical derivation of capacities, checked by simulation: (Aarts et al, 2023)
- Empirical validation is still lacking
- Question: is there a relationship between density and production for air traffic?



Intersection design: Doole et al, 2021

Definitions

- 3D extention of Edie's definitions:
 - Density: total travel time / area in space-time
 - Production: effective distance / area in space-time
- In airplane traffic stopping is not an option :)
- Effective distance accounts for detours,
 which are not counted towards effective production

Approach

- Flight data are broadcasted: Automatic Dependent Surveillance-Broadcast (ADS-B).
- The data are recorded by a receiver at the top of the aerospace faculty building of the Delft University of Technology
 - Aggregate over 30 mins
 - density and production
 - Check relationship and interpret

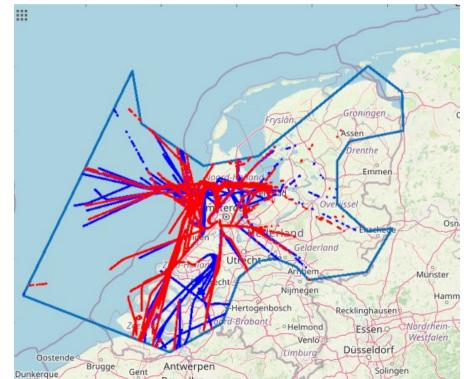
Data

- Amsterdam Schiphol airport (500,000 flights per year)
- Including surroundings
- Exclude high altitude ("through traffic") keep 5,500 to 19,500 feet
- 42,807 km2
- Select 4 months with various characteristics

Data

- Range over time of day
- Range over years (covid / non covid)

Results


Results

- Densities up to 0.0002 planes/km3
- Minimum separation:
 disk of 5 nautical miles radius and 2x 1000 ft altitude
 = 177 km3
 - Density: 1/177=0,0056 planes/km3
- Flow remains increasing
- Effective speed reduces
- Purple fit (Greenshields)

Discussion on densities

- Spatially not much of the airspace is used
- Planes cluster around the airport

Efficiency

- Flow reduction: detours or lower speeds?
- Ratio of production and [density times speed]
- Did plane go in one direction?
- Less with higher density, but the reduction of performance (purple line) is much stronger: speed reduction is more important

Conclusions

- For air traffic, an MFD can be made
- Densities for planes in a larger area do not approach critical density
- Production increases with density, yet flattens (effective speed reduces)
- Main cause: reduction of speed; detours less important

References

Daganzo, Carlos F. "Urban gridlock: Macroscopic modeling and mitigation approaches." Transportation Research Part B: Methodological 41.1 (2007): 49-62.

- Loder, A., Bressan, L., Wierbos, M.J., Becker, H. Emmonds, H., Obee, M., Knoop, V.L., Menendez, M., Axhausen, K.W. (2021) How many cars in the city are too many? Towards finding the optimal modal split for a multi-modal urban road network. Frontiers in Future Transportation, section Transportation Systems Modeling
- Doole, M., Ellerbroek, J. Knoop, V.L., Hoekstra, J. (2021) Constrained Urban Airspace Design for Large-Scale Drone-based Delivery Traffic Aerospace
- Cummings, C. and H. Mahmassani, Emergence of 4-D System Fundamental Diagram in Urban Air Mobility Traffic Flow. Transportation Research Record, Vol. 2675, No. 11, 2021, pp. 841–850.
- Haddad, J., B. Mirkin, and K. Assor, Traffic flow modeling and feedback control for future Low-Altitude Air city Transport: An MFD-based approach. Transportation Research Part C: Emerging Technologies, Vol. 133, 2021, p. 103380
- Aarts, M.J.M., Ellerbroek, J. and Knoop, V.L. (2023) Capacity of a constrained urban airspace: Influencing factors, analytical modelling and simulations, Transportation Research Part C: Emerging Technologies, Volume 152. DOI https://doi.org/10.1016/j.trc.2023.104173

