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ABSTRACT

Bicycles are gaining popularity as a mode of transport resulting in a mixed bicycle—car traffic situation on
urban roads. Cyclists however, are hardly included in traffic flow models which complicates the design of
safe and congestion-free traffic situations. This work introduces class-specific speed functions based on
two variables, being space headway for both cars and cyclists. This enables the macroscopic modelling of
mixed bicycle—car traffic. The multi-class macroscopic flow model is successfully tested for different traffic
situations that occur on urban roads where cyclists and cars share the same infrastructure, e.g. cyclists
overtaking a queue of cars and cars overtaking cyclists with reduced speed. The mixed bicycle—car flow
model allows travel time estimation of both classes, which in turn can be used to evaluate the overall
performance of a mixed traffic road.
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1. Introduction

Traffic participants in urban environments often share the available infrastructure. In places with high
cyclist volumes the roads are used simultaneously by cars and cyclists. This creates a mixed traffic
situation in which both classes can be the fastest moving one depending on the traffic state. In low de-
mand situations, cars have the opportunity to overtake cyclists, while in congested situations the cyclists
can manoeuvre alongside a queue of cars and thus be the fastest moving class. An essential property
of mixed traffic flow is this ability of cyclists to continue moving in congested traffic. Describing this
feature is important for estimating the expected travel time loss, which is a common metric for road
network performance. The travel time loss may differ for the multiple user types since the experienced
delay depends on the traffic state and the specific class characteristics.

Macroscopic flow models are commonly used for travel time estimation. However, these models
generally handle mixed traffic situations by selecting cars as the reference class and expressing the other
classes in passenger car equivalents (pce) based on their impact to the traffic flow. The pce-concept was
first introduced in the U.S. Highway Capacity Manual by (National Research Council 1965) and has
been used in many studies since then resulting in various methods to convert a mixed traffic stream
into a uniform one, as summarised by Shalini and Kumar (2014). A consequence of using the pce-
concept is that the speeds for both classes depend on one (pce-based) density, and cannot depend on the
vehicle-bicycle composition leading to that density. Therefore, it does not fully represent the movements
observed in mixed bicycle—car traffic. Our purpose here is to overcome this limiting model property by
introducing an alternative approach that enables switching of the fastest moving class in congestion.

This work presents a multi-class macroscopic traffic flow model which uses class-specific speed
functions that depend on the density of all classes as independent variables. The distinction into classes
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is based on mode of transportation only, so heterogeneity in e.g. driver type is not considered. A La-
grangian approach is used, following groups of traffic participants over time. Both group size and sim-
ulation time are discretised in the numerical implementation, while position is a continuum. The class-
specific speed functions are two-dimensional and take into account the space headway of both cars and
cyclists. The successful working of the model is illustrated for different traffic situations that typically
occur on urban roads. The proposed model allows for travel time estimation for multiple traffic modes
by describing their joint traffic dynamics, which in turn can be used to evaluate the overall performance
of a mixed traffic road.

The paper continues with a background on macroscopic traffic flow modelling in section 2, followed
by an explanation of the modelling principles in section 3, the numerical implementation of the model
in section 4 and the presentation of the class-specific speed functions in section 5. Afterwards, section 6
illustrates the successful working of the model and section 7 presents the discussion and conclusion.

2. Background on macroscopic modelling

This paper aims to describe mixed traffic flow in an urban setting where cars and cyclists share the
infrastructure, using a macroscopic flow model. Macroscopic models describe the evolution of traffic
movements over time and space at an aggregated scale using the quantities: density, average speed and
flow. This differs to microscopic flow models, which describe the movements of individual traffic partic-
ipants. The distinction between microscopic and macroscopic is therefore based on the level of detail.
Macroscopic models often use an equilibrium relationship between speed and flow. This equilibrium
relationship is commonly known as the fundamental diagram (Greenshield 1935).

The earliest macroscopic model is the LWR model, which is a first-order kinematic wave model that
was simultaneously introduced by Lighthill and Whitham (1955) and Richards (1956). It describes the
flow based on the assumption that traffic is a continuum and obeys the physical law for mass conserva-
tion. Using the density k, flow g and average speed w at position x and time ¢, the continuity equation is
given by:
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u(z,t) = U(k(z,t)) 3)

stating that velocity « is given by the fundamental diagram U.

The solution to the mentioned system of equations has two important properties: hyperbolicity and
anisotropy. Hyperbolicity indicates that perturbations in the flow travel as waves through time and space,
so they are not instantaneously felt in the whole domain. Anisotropy means that traffic flow is influenced
by the traffic state in front and not from the back. For this, the wave speed of perturbations should never
exceed the maximum velocity. Anisotropy requires the model to be weakly hyperbolic, which is the
case if when the velocity function is nonincreasing (Zhang et al. 2006; van Wageningen-Kessels et al.
2013). In simulation, the solution of the kinematic wave model is approximated using a numerical
scheme. The LWR model is commonly solved using Godunov’s method, which is a finite difference
scheme (Godunov 1959), but also other methods have been applied.

The LWR model is both loved and criticised for its simplicity. The main imperfection is that the model
describes equilibrium states only, which implies that changes in traffic state result in instantaneous



speed adjustments. In reality, traffic is often in non-equilibrium and a reaction time is observed for
acceleration and deceleration. This deficiency has been partially addressed in higher-order models by
replacing the fundamental diagram with a velocity function that includes acceleration behaviour based
on driver anticipation, relaxation and traffic inertia, e.g. Payne (1971). After critique that the higher-
order model is not anisotropic and therefore unrealistic at traffic discontinuities (Daganzo 1995), several
adjustments are proposed to incorporate changes in e.g. density (Aw and Rascle 2000), headway (Berg
et al. 2000), velocity distribution (Zhang 2002), speed gradient (Gupta and Katiyar 2006) and driver
physiological response (Khan et al. 2019). Despite these developments in second-order models, the
first-order kinematic wave model remains an effective and popular method to describe traffic flow as
long as traffic flow phenomena, e.g. capacity drop and stop-and-go waves, are not required.

The aforementioned models describe homogeneous traffic flow. The description of heterogeneous
traffic has been addressed in the development of multi-class models by distinguishing traffic type using
e.g. different velocities (Wong and Wong 2002; Zhang et al. 2006), vehicle size (Chanut and Buisson
2003; Logghe and Immers 2008), and impact based on velocity using static (Ngoduy and Liu 2007)
and dynamic passenger car equivalent (pce) values (van Lint et al. 2008). Furthermore, developments
have been made in describing traffic situations with multiple lanes, e.g. the ‘“2-pipe regime” with slugs
and rabbits (Daganzo 2002), modified speed—density relation based on lane-changing (Jin 2010) and
utility-driven lane changes (Shiomi et al. 2015). The disordered traffic situation, in which lane discipline
is lacking, has been captured in continuum models using e.g. available space (Benzoni-Gavage and
Colombo 2003; Nair et al. 2011; Fan and Work 2015) and lateral distances (Gupta and Dhiman 2014).

Heterogeneous models capture the characteristics of different traffic types and the effect of their
interaction on the overall flow. Slow vehicles, such as buses (Lebacque et al. 1998) and lorries (Mufioz
and Daganzo 2002), are considered as moving bottlenecks for cars, whereas the impact of pedestrians on
car traffic is addressed in Daganzo and Knoop (2016). The model of Fan and Work (2015) includes the
characteristic trait of small vehicles, i.e. motor cyclists, to manoeuvre through congestion, maintaining
a higher speed than cars. This interaction between cars and powered two-wheelers is further developed
by Gashaw et al. (2018), whose model also takes into account that a higher share of two-wheelers results
in a lower speed at similar road occupancy. To our knowledge, bicyclists have not been included yet in
macroscopic models. However, there are examples of microscopic models that include bicycles, e.g. the
individual-following model by Tang et al. (2010) and the cellular automata model by Luo et al. (2015).

All macroscopic flow models describe traffic using the relation between position, time and vehi-
cle number. Three different representations of traffic arise by fixing one of the three variables (Laval
and Leclercq 2013). The most common one is the Eulerian coordinate system, which fixes the vehicle
number and visualises the number of vehicles that have passed a location at a certain time. Another
well-known representation is the Lagrangian coordinate system in which time is fixed. Here, the time at
which vehicles pass a certain location is simulated, resulting in trajectories. The third and least common
representation fixes the position and describes the time at which vehicles cross a certain location.

Although the Eulerian method is most commonly used, the Lagrangian method has been successfully
applied to numerically solve the kinematic wave model as well. This has been done for homogeneous
traffic (Leclercq 2007; Wu et al. 2014) as well as mixed traffic including trucks (van Wageningen-
Kessels et al. 2011) and motor cyclists (Gashaw et al. 2018). Examples of the Lagrangian method ap-
plied to second-order flow models are Greenberg (2001, 2004); Zhang et al. (2012). In the macroscopic
approach, the Lagrangian method calculates the traffic evolution for platoons consisting of multiple ve-
hicles, whereas the microscopic approach gives the trajectories of individual traffic participants. The
macroscopic model reduces to a microscopic car-following model when the platoon size is reduced to
one vehicle only, as shown e.g. by (Aw et al. 2002) and Leclercq (2007). Information travels downstream
only in the Lagrangian Godunov scheme, making it less prone for errors due to numerical diffusion. Us-
ing the Lagrangian methods therefore results in a more robust model compared to the Eulerian scheme
where information travels both up and downstream.

Based on the above we have identified the gap in literature that bicycles are not yet represented
in macroscopic traffic flow models, while they are an important part of daily traffic in countries such



as The Netherlands and China. The common feature in the above-mentioned models is that a fastest
class is assumed; one class, i.e. the passenger car, is assigned to have the highest speed irrespective of
prevalent traffic conditions. This assumption is limiting when representing bicyclists, since they are able
to switch into being the faster class when manoeuvring forward in congestion. This occurs for instance
in the situation where the road is wide enough for a car and cyclist to move alongside each other, and
the cyclists can pass a queue of stopped cars. We include this phenomenon by introducing class-specific
speed functions in the first-order macroscopic model, which depends on the density of all modes. We
use the Lagrangian method because of its modelling accuracy.

3. Lagrangian model

The starting point of our model is the continuity equation in Eulerian coordinates, Eq. 1, which states
that changes in density over time should match the change in flow over space, indicating that vehicles
should not suddenly appear or disappear from the road. To rewrite into Lagrangian coordinates, we use
the spacing s instead of the density & as the main variable. Spacing is equivalent to space headway
and is defined as the average distance between travellers belonging to the same entity. Furthermore, the
spacing is inversely proportional to the density,

1
S = —. (4)
The spacing can also be expressed as the partial derivative of the position x to vehicle number n:
ox
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Here, the negative sign results from the choice in numbering of traffic units. These numbers are assigned
when traffic units pass a certain position. When selecting a position further along the road (larger x),
less vehicles will have passed it (lower n), resulting in a negative sign for the change in n.

When substituting Eq. 4 into the Eulerian continuity equation we get:
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Now, using the quotient rule, Eq. 5 and the Lagrangian time derivative
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we retrieve the continuity equation expressed in Lagrangian coordinates:
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The Lagrangian continuity equation states that speed differences between traffic units coincide with
changes in their spacing over time. In other words, when two following vehicles initially go at equal
speed and the first one slows down, the distance between the two vehicle should decrease.

We now extend the model to describe multiple classes, similar to the multi-class LWR model ex-
pressed in Eulerian coordinates Wong and Wong (2002). The conservation equation holds separately
for each class v and all variables are class-specific except for time:
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The density of different classes are not combined into one effective density, but treats them indepen-
dently instead. In practice, this implies that traffic participants of each class can move alongside each
other as if they are using separate sections of the road. The interaction between classes is included in
the model via the speed function, which will be elaborated on in section 5.

In the numerical implementation, both time and traffic units are discretised in finite steps, while space
remains a continuum. Although more classes are possible, we continue with two only, being cars (u = ¢)
and bicyclists (v = b). The traffic units within these classes are grouped into platoons of a certain size.
More details are provided in the following section.

4. Numerical implementation

The Lagrangian continuity equation (9) is a hyperbolic equation which can be solved numerically using
the Godunov scheme. Following the works of Leclercq (2007); van Wageningen-Kessels et al. (2011)
we use an explicit time-stepping scheme to solve the continuity equation, resulting in the following
discretised equation:

St = S+, (o1~ ) (10)

This equation states that the spacing s in platoon ¢ of class u in the following time step (¢ 4+ 1) can be
retrieved by taking the spacing at time ¢ and add it to the difference in speed (v) of subsequent platoons
(i and i — 1), corrected with the time step At divided by the number of traffic units in a platoon An. To
ensure stability and convergence of (10), the CFL condition should be met, which limits the distance a
platoon can travel downstream within one timestep (van Wageningen-Kessels 2013). This condition is
given by:

At dv
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The length of platoon 7 stretches between positions x,,, and x,,,,, and the corresponding spacing within
that platoon equals its length divided by its size:

Lu; = Luyy
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Using this discretisation for spacing, we can express the discretised continuity equation (10) in position
x,, which simplifies the simulation, resulting in Eq.13. The new position = of platoon ¢ and class u is
retrieved by adding up the previous position and the distance travelled within the time step At.

it =2l + 0l At (13)

The change in position is based on the speed v, which in turn depends on the spacing of all classes in
the previous time step. In our case, we use two classes, bicycles b and cars c:
ol =V, (sh, L), (14)
where V,, is the speed function specified by Eq. (18) and (19) in section 5.
The position and speed are given for the first car or cyclist of a platoon, which is defined here as
a platoon of dn traffic participants. When the platoon size equals 1, the scheme is basically a micro-

scopic car-following model. This equivalence has been demonstrated by Leclercq (2007) and Zhang
et al. (2012). In the macroscopic approach, the platoon size exceeds 1 but it is not restricted to positive



integers. Numerically, the platoon size consist of 1.43 or 15.43 traffic participants. However, using deci-
mals would come at the cost of an intuitive physical interpretation of the modelling results. An example
of the numbering of platoons, positions and spacings are visualised in Figure 1a. An additional position
is added (x,,, ) to mark the end of the last platoon and to ensure that a spacing can be calculated for the
area following the last platoon.

A choice is made on how the positions of the N platoons influence the spacing, which influences the
speed. Since the speed of a car or cyclist in a platoon is influenced mostly by what happens in front of
the platoon, we argue that the downstream spacing is mostly of influence to the speed and to a lesser
extent the spacing within the platoon. This way we ensure anisotropy in the numerical scheme. We use
the downstream spacing for calculating the speed and the speed equation (14) is further specified to:

bt =V, (sh, L sh ). (15)
This equation requires as input the spacing of both classes at the position of a platoon. For one of the
classes, the spacing retrieved by Eq. (12) can directly be used. However, the spacing of the other class
is unspecified yet because the values are known for different x-positions. Therefore, the spacings of the
other class need to be determined which is done via linear interpolation. Giving the example of finding
the car spacing at the position of a bicycle platoon, the linear interpolation is performed using the car
spacing as base for the positions of the car platoons. Figure 1b presents a visualisation of this process.

Using the spacing of the downstream area of the platoon comes with a challenge; the spacing in front
of the first platoon cannot be determined using Eq. (12) without implementing additional boundary con-
ditions. For this purpose, two additional z-positions are predefined which are similar for both classes:
Zo at a position very far away and x,1 at x = 0, see Figure 1a. The first boundary condition ensures
that the first platoon always experiences an empty road, while the second condition ensures an empty
road after passing of the last platoon.
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Figure 1. Sketch showing the numbering of the position x and spacing s for two platoons of cars and cyclists (a) and the linear interpolation
to retrieve the car spacing at the positions of the bicycle platoons (b).

5. Class-specific speed functions

A main contribution of this work is that the model can handle class-specific speed functions which de-
pend on densities of both classes. In a first-order macroscopic model, the speed function is typically
provided by a fundamental diagram, describing the equilibrium relation between the aggregated vari-
ables spacing, speed and flow rate. The speed is typically given by the function V' that depends on
density and in our case on spacing. In our multi-class situation, the class-dependent fundamental di-
agram is based on the spacing distribution of both cars and cyclists. Previous work in literature have



tackled this multi-dependency by introducing a pce value for each class and calculating the speed based
on the number of pce present, v = V (spce).

This study takes an alternative approach using two-dimensional speed functions. The main thought
underlying this idea is that at a given generalised density, the speed of cars is fixed, while the speed of
cyclists can vary depending on the traffic state, e.g. due to their ability to manoeuvre along a queue of
cars. This feature of mixed traffic cannot be captured accurately by a model based on pce value, since
this assumes the reference class to always be the fastest moving class. To model the characteristics
of both classes correctly, this study introduces class-specific two-dimensional speed functions, which
describes the speed of a class, based on the spacing of both cars and cyclists separately, so v = V (s, sp).

The framework presented here can handle various shapes of the fundamental diagram V' (s, s). The
starting point for our two-dimensional speed functions is the triangular fundamental diagram in flow-
density for single class traffic flow (Daganzo 1994). In the speed-spacing format, this function is given
by:

0 if Sy = SUJ [1]
Vi(sy) = (Se¢ = Sej)wy  if Syuj < Sy < Syer 2] (16)
Uy, f if Su > Su,cr [3]
with w the wave speed of traffic state characteristics, given by:
v
wy = ——2F (17)

Su,cr T Su,j

Eq. (16) states that the traffic entities of class u are at stand still (v = 0) when the jam spacing (s jam)
is reached, their speed gradually increases with spacing until the desired speed (v, ¢) is reached at the
critical spacing (sy,cr), and continue to travel at the desired speed for larger spacings. The characteristic
values for jam spacing, critical spacing and free flow speed used in this study are presented in Table 1.
Figure 2 presents the resulting single-class speed-spacing diagram of cars and bicycles when no other
class is present. To connect the two classes, additional cased are added to (16) while trying to maintain
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Figure 2. Single class speed functions for cars and bicyclists.

a linear expression where possible. This has resulted in the class-specific speed functions for bicycles
(18) and cars (19).

For the speed of bicycles, a condition is introduced to reduce the speed to vy, ..q When cyclists are
passing a queue of cars (18.4). Condition (18.5) is included to ensure that the cycling speed does not ex-
ceed the reduced speed when cars are slowed down in congestion but not standing still. Equation (18.6)
is added to ensure a smooth transition at the boundaries between the reduced speed and the speed reduc-



tion caused by decreasing bicycle spacing (18.2). For cars, two additional rules are introduced. First,
cars cannot overtake when there are too many cyclists on the road, and they have to adapt their speed to
match the cyclist” speed (19.2). Second, when cyclists are sparsely present, i.e. s, > a, sufficient space
for cars is available to move in between and overtake at a reduced speed (19.4). We assume this suffi-
cient spacing to be 10m (¢ = 10m). The parameter wy, is the tangent of the connecting line between
the reduced and free flow speed of bicycles, given by Eq. (20). A contour plot of the two-dimensional
speed functions are shown in Figure 3.

The class-specific speed-functions presented here are non-decreasing with spacing (% > 0), which
according to van Wageningen-Kessels (2013) should ensure the model to be weakly hyperbolic and
therefore able to show anisotropic behaviour. Further investigation of the hyperbolicity of the model is

not performed.
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Figure 3. Two-dimensional speed functions for cars (a) and bicyclists (b)
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Table 1. Characteristic values used in the speed func-
tions: jam spacing s;, critical spacing scr, free flow speed
v and reduced speed vyeq

sjlm]  scr[m]  wve[m/s]  vpeq[m/s]
cyclists 1.5 4.5 5.0 2.0
cars 5.0 10 9.0 -

6. Case study

To illustrate the working of the model, we consider several situations which occur on uni-directional
urban streets with mixed bicycle—car traffic. A specific example is a so called ‘cycling street’ which is
gaining popularity in The Netherlands. The traffic behaviour has specific characteristics resulting from
the property that bicyclists are prioritised over car drivers. No uniform design of a cycling street exists
but it is typically wide enough for cars to overtake cyclists. However, cars are considered as guests on
the road and have to slow down when cyclists are present. Furthermore, cars cannot overtake when the
cyclist density exceeds a certain threshold and as a result, the cars have to match the cyclists’ speed.
When cars are moving slowly in a queue there is enough space for cyclists to carefully pass the queue
and create their own queue closer to an intersection. The speed limit on this cycling street is 30 km/hr.
In the following three cases we follow several platoons of five traffic units in space and time (An = 5)
and the simulations are performed with time steps of two seconds (At = 25s). The speed is given by
equations 18 and 19 and the characteristic values in the speed functions are presented in table 1.

6.1. Little to no interaction

We consider a situation with low demand for the purpose of face-validation. All traffic participants
can move at their maximum allowed speed and the spacing is large. As a result, the two classes have
sufficient space to manoeuvre freely and are unhindered by each others presence. This is the case when
we set the initial spacing of both classes to 20 m, which results in a total platoon length of 100 m.

Two cases can occur depending on the starting positions, displayed in Figure 4; either the cars have
a head start over the bicycles (a) or the other way around (b). In both cases there are two platoons of
cars and three platoons of cyclists. In the primary case, the cars are given a head start of 350 m. As a
result, no interaction between the two classes takes place since the desired speed of cars is higher than
that of cyclists causing a rapid divergence of the two classes. Interaction does occur in the second case
where the starting positions are switched and the cyclists have a 350 m head start over the cars. Since
cars have a higher desired speed, the first platoon of cars catches up with the final platoon of cyclists.
Figure 4b shows that this happens after approximately 40 s in the simulation. The spacing of the cyclists
however is sufficiently large and cars can overtake without having to reduce their speed. Note that the
speed limit on the bicycle road is 30 km/hr, which is considered a safe speed to overtake and no further
speed reduction is required. In our simulation it takes about 170 s before all cars have passed the cyclists
and the two classes start to diverge.

6.2. Interaction and adjustment by cars

Interaction takes place when more cyclists are occupying the road and their space headway is decreased.
For visualisation purposes, we only consider two car and three bicycle platoons but the model will work
for any number of platoons. The initial spacing for cars remains 20m, while the bicycle spacing is
decreased, resulting in a more compact platoon length.

Different interactions take place depending on the exact initial spacing. This is best visualised when
the initial bicycle spacing is set close to the threshold for interaction, which is a = 10 m according to
Eq. 19. The initial spacing is set to 10.2m in Figure 5a and 10 m in Figure 5b. As a result, the cars
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Figure 4. Simulation results for low demand situation (s (to) = sc(to) = 20m), showing no speed adjustments when cars have a head start
over cyclists (a) and cyclists have a head start over cars (b).

overtake the bicycles with reduced speed in the first case and have to match the cycling speed in the
latter case. The speed reduction is visualised by the magenta coloured cells which intensifies when the
reduction increases. In both cases, the cyclists start with a 350 m head start over the cars, and they can
move unhindered and at their desired speed throughout the simulation.

The magenta colouring in Figure 5a and b illustrates that the speed adaptation sets in before the
complete platoon has reached the cyclists. Also, in Figure 5a can be seen that the speed increases
already before all cyclists are overtaken. This results from our choice in the numerical implementation
to determine the speed based on the spacing in front (Eq. 15), which can be interpreted as anticipation
behaviour. As a result, the car spacing after overtaking the cyclists is larger than before the cars reached
the cyclists.
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Figure 5. Simulation results for different demand situations. When initial spacings are s, (to) = 10.2m and s¢(to) = 20m, cars can still
overtake cyclists but at a reduced speed (a) and when initial spacings are sp(tg) = 10m and s.(tp) = 20m cars have to match the speed of
cyclists (b). The magenta colouring appears when the speed is reduced and is more intense for lower speeds.

6.3. Queuing situations

Both cyclists and cars have to adjust their speed in congested situations where the spacing reduces to
values below the critical density. This is included in the simulation by introducing a temporary obstruc-
tion; the first platoon is enforced to stop in the first time step causing queue formation behind it. Again,
two cases can occur based on the starting positions of the two classes. When the cyclists have a head
start over the cars, the first platoon of cyclists is stopped creating a growing queue of first cyclists and
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then cars, see Figure 6a. The speed reduction of the cars and cyclists is visualised by the colours ma-
genta en cyan respectively; no colour is shown when speed coincides with the desired speed. In total,
three car and four platoons are followed in time and space. The first cyclists have a 450 m head start
over the first cars. After some time in the simulation, the first cars catch up with the last cyclists and
the cars have to reduce speed until they come to a complete stop. The bottleneck is removed after 200 s
after which the cyclists restart moving and the queue is gradually cleared. The cyclists quickly move at
their desired speed again, but the spacing is too small for the cars to overtake.

A different situation occurs when the starting positions are switched around and the first car platoon
is stopped instead. The cyclists can pass the queue of cars but have to do so at a reduced speed. The
cars have a head start of 300 m over the cyclists and it takes some time for the first cyclists to catch up
with the last cars. When looking closely at the colouring, the cyclists are reducing speed well before
they reach the actual position of the queue, and they are increasing in speed before the queue is actually
passed. This results from the assumption that the speed is influenced most by the spacing in front of the
traffic participants instead of the spacing at their current position. When the cars start moving again after
the obstruction is removed, the cars can first move at their maximum allowed speed until they catch up
with the cyclists and reduce their speed to gradually overtake them.
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Figure 6. Simulation results for queuing situations. In (a) sp(t0) = 10.2m and s.(to) = 20m and the cyclist have a head start of 450/,m.
In (b) sp(to) = 10.4m and s¢(to) = 20m and the cars have a head start of 300/,m. The cyan and magenta colouring appear when the speed
is reduced for respectively cyclists and cars.

6.4. Discussion

The face-validation of the three cases show that the model can accurately handle various conditions
that occur in mixed traffic situations where bicycles and cars share the same infrastructure. The main
feature is that both classes can be the fastest moving one, depending on the traffic state. Furthermore, the
model includes anisotropy by considering only the spacing of all classes in front of the current position
to adjust the speed. This modelling approach leads to plausible results including anticipation; traffic
participants slow down before reaching a queue and accelerate when a queue is about to dissolve.

When comparing our modelling outcome to available research on mixed bicycle-car traffic, we have
two observations. Our model includes a two-way interaction between cars and cyclists; the speed of
cars is influenced by the presence of bicycles and vice versa. This property is an improvement com-
pared to the individual-following model by Tang et al. (2010), which includes one-way interaction only.
However, the bicycle-car interaction in our model is based on space headway only and does not take
the lateral spacing into account, which is the case in the cellular automata model by Luo et al. (2015).
To include the interaction due to lateral distance, future development of our model could include a
fundamental diagram based on an area density.

The presented model is tested solely to qualitative criteria and has not yet been validated with obser-
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vational data. The model is tested for the Dutch cycling street scene but could also be applied in other
mixed traffic situation, e.g. where lane discipline is lacking. However, this would require an adjustment
to the speed functions. The development of a more general description of the speed function will be
beneficial for the applicability of the presented macroscopic flow model.

7. Conclusion

A first-order multi-class macroscopic flow model is presented to describe mixed bicycle-car traffic. The
model uses class-specific speed functions, enabling each class to be the fastest moving one depending
on density. This trait facilitates the modelling of e.g. congested situations where cyclists can manoeuvre
along a queue of cars. The presented model is specifically relevant for shared street situations, which
typically occur in urban environments. Three test cases show the ability of the model to handle various
traffic flow conditions that occur in mixed traffic situations where bicycles and cars share the infrastruc-
ture. The model shows anisotropic behaviour by considering the spacing of all classes in front to adjust
the speed. This modelling approach leads to plausible results including anticipation; traffic participants
slow down before reaching a queue and start accelerating when a queue is about to dissolve.

The working of the model has been successfully tested based on qualitative criteria, showing the
expected behaviour of mixed bicycle-car traffic. The next step would be to perform a validation of
the model to quantitatively test it against observational data. This data however, is not yet available.
Furthermore, the mathematical properties of the model could be further investigated, e.g. hyperbolicity.
In this study, mixed traffic consisting of bicycles and cars are considered but the model is equally
applicable to other configurations of mixed traffic. However, this would require adjustments to the speed
functions. Possible applications of the model are estimation of e.g. class-specific travel time and road
capacity in a mixed traffic situations, which is all relevant input data to network-wide traffic models and
route choice models.
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