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probabilities (4–7 ), commonly using (stochastic) queuing analysis
and nucleation models. These modeling approaches are thoroughly
discussed elsewhere (7 ).

Here, use is proposed of a coupled set of partial differential equa-
tions describing both the traffic dynamics [using the first-order model
of Lighthill and Witham (2) and Richards (3)] and the dynamics of
the phase-transition probabilities. The proposed modeling framework
can be considered as a relatively straightforward generalization of
the kinematic wave theory to three-phase theory.

The focus is on dynamic modeling of the phase-transition proba-
bilities and the implications this has for the properties of the first-order
model. Other issues discussed by Kerner (such as the two-dimensional
area depicting stable states in synchronized flow) are not considered
in this paper.

MATHEMATICAL MODEL OF 
BREAKDOWN PROBABILITY

This contribution describes dynamic modeling of the breakdown (or,
rather, phase transition) probability, which is denoted by P = P(t, x).
The probability is a function of time t and space x and is thus not only
determined by the prevailing traffic conditions such as the density.
The macroscopic dynamic model consists of the following set of
coupled ordinary differential equations:

with initial conditions

where L denotes the roadway length. The boundary conditions are
usually defined at the road entry, by specification of the inflow q0(t).
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Macroscopic Modeling Framework
Unifying Kinematic Wave Modeling 
and Three-Phase Traffic Theory

Serge P. Hoogendoorn, Hans van Lint, and Victor L. Knoop

Modeling breakdown probabilities or phase-transition probabilities
is an important issue when assessing and predicting the reliability 
of traffic flow operations. Looking at empirical spatiotemporal pat-
terns, these probabilities clearly are a function not only of the local
prevailing traffic conditions (density, speed) but also of time and space.
For instance, the probability that a start–stop wave occurs generally
increases when moving upstream away from the bottleneck location.
A simple partial differential equation is presented that can be used to
model the dynamics of breakdown probabilities, in conjunction with
the well-known kinematic wave model. The main assumption is that the
breakdown probability dynamics satisfy the way information propagates
in a traffic flow, that is, they move along with the characteristics. The
main result is that the main characteristics of the breakdown proba-
bilities can be reproduced. This is illustrated through two examples: free
flow to synchronized flow (F-S transition) and synchronized to jam
(S-J transition). It is shown that the probability of an F-S transition
increases away from the on ramp in the direction of the flow; the prob-
ability of an S-J transition increases as one moves upstream in the
synchronized flow area.

The research of Kerner has resulted in quite a stir in the traffic
flow theory community (1). Among the issues raised by Kerner
are that there are three phases (free flow, synchronized flow, and
jams), rather than two (free flow and congestion); that the break-
down phenomenon is a stochastic process stemming from the fact
that small or large disturbances can trigger phase transitions with
a certain probability; and that the fundamental diagram does not
exist since the congested branch is a two-dimensional area, rather
than a straight line. Furthermore, Kerner claims that none of the
current microscopic or macroscopic traffic flow models captures
correctly the different flow characteristics that are observed from
empirical analyses.

This paper focuses on the breakdown phenomenon. A unifying
modeling framework is proposed that allows the dynamics of the
breakdown or phase-transition probabilities to be modeled intu-
itively by using the kinematic wave model (2, 3) as a basis. Various
researchers have considered the dynamic modeling of breakdown
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In this case, the transition probability at the boundary is to be
defined:

Equation 4 implies that all vehicles can freely enter the road,
although in practical situations, this is not necessarily the case (e.g., in
case of congestion spillback). For the boundary conditions at x = L,
it is assumed that all traffic can exit the road freely, so no boundary
conditions are given for the exit.

In Equations 1 and 2, c(ρ) denotes the kinematic wave speed,
describing the speed (and the direction!) at which (small) perturbations
propagate through the traffic flow. The kinematic wave speed is equal
to the derivative of the fundamental diagram Q = Q(ρ). This follows
directly from the shock-wave equation, stating that the speed of a
shock wave S separating regions (ρ1, q1) and (ρ2, q2) is given by

In Equation 2, π = π(ρ, P) denotes the rate of change in the
breakdown probabilities P, which are assumed to be a function 
of the density ρ = ρ(t, x) and the probability P itself. Note that P
can describe both a free-flow to synchronized flow (F-S) transition
(P = PF-S) or a synchronized to jam (S-J) transitions (P = PS-J).
Both examples are shown.

Although P can be construed as a probability in the classical
sense of the word, for its corrective interpretation one also needs
to consider the time and space dimensions explicitly. That is, P
denotes the probability that a phase transition will occur within
the next τ seconds somewhere in a roadway segment of length d.
In numerical studies, τ will be generally chosen equal to the sim-
ulation time step Δt, d will be chosen equal to the cell length Δx,
and P will denote the probability that a phase transition occurs
during this time step.

Model Justification

The concept behind the mathematical model is the assumption that
the phase-transition probability P changes along the characteristic
curves, just as the density does. This means that if a perturbation
in the flow is considered, the phase-transition probability P will
change along with this perturbation moving with the kinematic
wave speed c(ρ).

To understand this property fully, consider a platoon of vehicles.
Suppose that the platoon leader will brake briefly. The disturbance
this causes will move from one vehicle to the next, possibly chang-
ing in amplitude while moving upstream. The speed at which this
perturbation moves is equal to the characteristic speed c(ρ). If the
perturbation becomes sufficiently large, it may induce a phase tran-
sition, depending on the stability conditions given by the prevailing
traffic conditions. Alternatively, the perturbation may damp out,
implying that the probability of a phase transition will reduce along
the perturbation.
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Consider the so-called characteristic curves of the kinematic wave
model. These curves are parameterized curves C that are defined by
the path

In Equation 6, t = t(s) and x = x(s) are defined by the following
ordinary differential equations:

and

Now, let ρ(s) = ρ(t(s), x(s)) denote the (parameterized) density
along the characteristic curve:

The density ρ is conserved along the characteristic C (ρ(s) = ρ(0)).
Since the characteristic speed c(ρ) depends on the constant density ρ
only, the speed c(ρ) is constant as well. Therefore, the characteristic
curves C in the kinematic wave model are straight lines.

The same characteristic curves can be used for Equation 2. Let
P = P(s) denote the phase-transition probability along C. One can
thus show that

Since dP/ds = π(ρ, P), π(ρ, P) can be interpreted as the rate at
which the phase transition probability changes over time along the
characteristic.

Inside a congested region, c(ρ) ≈ −15 km/h ≈ −4 m/s, implying
that the phase-transition probability P increases in the move upstream
away from the point at which the congestion originated. Considering
P = PS-J (transition from synchronized to jammed flow), it can be
modeled that the probability of a transition from synchronized flow
to so-called wide-moving jams increases when moving away from
the head of the queue (in the upstream direction).

Outside congestion, one has c(ρ) ≈ 85 km/h. Considering P = PF-S

(probability of a transition from free flow to synchronized flow),
the observed increases in this probability can be modeled moving
downstream from the bottleneck, for example, that congestion sets
in downstream of an on ramp rather than at the location of the on
ramp itself.

Behavior of Phase Transition Probabilities 
at Shocks

Shock waves occur when characteristics C intersect. If this happens,
the speed ω of the shock is determined by the well-known shock wave
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equations in Equation 5 and is determined only by the flows and the
densities upstream and downstream of the shock. The phase-transition
probabilities upstream and downstream of the shock are not affected
by the shock itself, because the characteristics move toward the
shock (and do not emanate from the shock).

Discretization of Equations

To numerically solve the problem, the standard Godunov scheme is
proposed for the conservation of vehicle equation (8). For the tran-
sition probability, basically any discretization scheme will work.
The following standard scheme is proposed:

SPECIFICATION OF MODEL RELATIONS

The main goal for this paper is to illustrate how the dynamics of
phase transitions can be modeled by using the presented approach.
The examples in the next sections show that the modeling outcomes
resemble real-life flow patterns.

Fundamental Diagram and Phase Definitions

To illustrate the consequences of the dynamic modeling of phase
transitions probabilities, a simple, piecewise linear fundamental
diagram is used (Figure 1). The diagram has four parameters: the free
capacity Cfree, the queue discharge rate Ccong, the critical density ρcrit,
and the jam density ρjam.

The three phases considered in this contribution are free-flow
conditions F (the left branch of the diagram), the synchronized
flow conditions S (the right branch of the diagram), and jam con-
ditions J. (For simplicity, a linear relation is assumed between den-
sity and flow in case of synchronized flow. Although this is not in
line with three-phase theory, it is sufficient in showing the model
behavior.)
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Transitions from the one phase to the other are modeled by instan-
taneous jumps in the phase diagram. In the application example, these
are instigated on the basis of the value of the phase-transition prob-
abilities PF-S (free flow to synchronized flow) and PS-J (synchronized
flow to jam). The different transitions are modeled as follows:

• A breakdown from F to S is modeled by a jump in the capacity
(from Cfree to Ccong), keeping density constant and equal to the criti-
cal density. In the example, it is assumed that this transition occurs
whenever (and lasting as long as) PF-S ≥ 0.5.

• A transition from S to F is modeled by a jump in the capacity
(from Ccong to Cfree). For the example shown, this occurs whenever
the PF-S drops below 0.5.

• A transition from S to J is modeled by assuming zero flow at
the breakdown location (effectively reducing the local capacity to
zero for a specific period). This state is maintained until a transition
from J to S occurs. In the example presented, this occurs as long as
(and at all locations where) PS-J ≥ 0.5.

• A transition from J to S is modeled by assuming maximum
outflow from the jam. That is, the flow is restored from 0 to Ccong. In
the example shown in the remainder, this occurs when PS-J < 0.5.

This is only an example to illustrate the model properties. More
refined approaches, such as using random transitions based on the
phase transition probabilities, can be easily developed based on
the ideas put forward in this paper.

Specification of Transition Probability Rate

Consider the phase-transition probability rates π = π(ρ, P) and its rela-
tion to the phase-transition probabilities. A mathematical specification
of these rates would consider the location where transitions from one
traffic phase to the other traffic phase occurs, such that the (locations
of) the transitions can be correctly on a phenomenological level.

The following linear expression is used for the rate π(ρ, P) (both for
the F-S transitions and the S-J transitions, be it with different
parameter values; see Equation 12):

Additionally, it is assumed that P = 0 if the density is less than ρ0.
Furthermore, P will be limited to values between 0 and 1. After some
straightforward computations, it follows that along the characteristic
curves C = {t(s), x(s)}, the transition probability equals

EXAMPLE APPLICATION OF THEORY

Results are given in this section of applying the model. Both F-S
transitions (P = PF-S) and S-J transitions (P = PS-J) are considered.
First, the specification of the transition probability rates π used in
the rest of the paper is given.
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FIGURE 1 Piecewise linear fundamental
diagram, including phase definitions.



F-S Transition Probability Behavior

Consider a two-lane, 10-km road with an on ramp at x = 6 km. For
the piecewise linear fundamental diagram, assume Cfree = 4,500 veh/h,
Cqueue = 4,000 veh/h, ρcrit = 50 veh/km, and ρjam = 250 veh/km.

For the scenario at hand, Qmain = 3,500 veh/h and Qon-ramp =
1,250 veh/h. Various parameter values were considered and π0 = 1
and π1 = 100 were chosen (for illustration purposes); ρ0 = 40 veh/km
and ρ1 = ρcrit. It is assumed for all examples that all traffic coming
from the on ramp will be able to merge onto the freeway.

Figure 2 shows the results of the numerical experiment. The figure
shows the density profile, the location of the points on the funda-
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mental diagram, and the transition probabilities. The F-S breakdown
probability increases nonlinearly after the on ramp at x = 6 km. In
other words, the occurrence of a breakdown becomes more likely
further downstream of the on ramp. (Note that π1 = 0 would yield a
linear increase.)

If it is assumed there would be an F-S transition (in this case,
modeled by temporarily assuming that the capacity is reduced from
Cfree to Cqueue) when PF-S > 0.5, the simulation shows that at a certain time
instant the transition occurs (downstream of the bottleneck), moves
upstream, and passes the on-ramp location. There it leads to the onset
of congestion (because the capacity is reduced); see Figure 3. Figure 4
shows the resulting dynamics of the breakdown probability PF-S itself.
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S-J Transition Probability Behavior

Similar behavior is found for the S-J transitions. In this case, π0 = 1
and π1 = 100 (for illustration purposes) have again been used to
describe the S-J transition; ρ0 = ρcrit and ρ1 = 200 veh/km. For this
scenario, assume that Qmain = 4,000 veh/h and Qon-ramp = 1,500 veh/h,
implying that the bottleneck is oversaturated.

The result is indeed similar to the result found for the F-S tran-
sition: the probability on an S-J transition is zero at the on ramp
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(where this model assumes that the head of the queue is located)
and increases nonlinearly in the move upstream away from the
bottleneck (Figure 5).

As a final example, assume that an S-J transition occurs when
PS-J > 0.5 (i.e., it is deterministic). Figures 6 and 7 show the results
of this analysis. Clearly, the values are not realistic, but the gen-
eral picture appears to be correct. It is also astonishing to see 
the chaotic patterns that emerge even when this simple example
is used.
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FIGURE 4 Dynamics of PF-S for on-ramp scenario.
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TOWARD STOCHASTIC MODELING

So far, there are only deterministic phase transitions where it is
assumed that a phase transition (from F to S or from S to J) occurs
deterministically when P > 0.5. This section discusses how the model
can be extended toward a stochastic model. This will be performed
for the discretized model, where it is assumed that the roadway was
divided into cells of length Δx and the time step is equal to Δt.

It is assumed that at any time t, the time to breakdown (or rather,
time to phase transition) within a cell of a fixed length is exponen-
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tially distributed with a mean breakdown time τ = τ(t, x). That is, the
probability that the random breakdown time T is less that s equals

For short intervals (e.g., of length h > 0), the probability that traffic
breakdown will occur is equal to

P T h
t t= <( ) = − − ≈Pr exp ( )1 15

Δ Δ
τ τ
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FIGURE 6 Deterministic modeling of S-J transition.
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For small time intervals, one can thus conclude that the breakdown
probability in an interval of length 2Δt is twice as big as the breakdown
probability in an interval of length Δt. This is intuitively correct.

The same line of thought is applied to the length of the cell
being considered: intuitively, a cell of length Δx has twice the prob-
ability that traffic will break down than does a cell of length Δx.
This is why Equation 14 is replaced and it is assumed that the break-
down probability P can be modeled via the following exponential
distribution:

In Equation 16, τ is the mean time to breakdown determined for
a roadway segment of length d.

CONCLUSIONS

This paper proposed a relatively simple extension of the first-order
model pertaining to the inclusion of breakdown probabilities. The
breakdown probability is modeled by using a partial differential
equation. The main assumption is that information regarding the
breakdown probability moves along the characteristic curves.

The workings of the model are illustrated by means of an exam-
ple featuring flow breakdown due to an on ramp. By using this
example, it is shown that the model can capture the main features
of the different phase transitions (F-S, S-J).

Future research will model the phase transition itself. In the
examples provided in this paper, this was achieved by using a simple
threshold value for the transition probabilities. A stochastic approach,
however, is more realistic. Clearly, this would yield a stochastic
first-order macroscopic model.

Another extension of the theory is to use a multiclass traffic flow
model, distinguishing between person cars and trucks. In doing so,
the dynamics of the phase transitions can be made dependent on
the traffic composition, since clearly this has a strong effect on the
breakdown probability dynamics.
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