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Abstract 
Uncertainty of traffic network operations has been a subject of lively debate in the last 
decade. However, little efforts have been put in developing control frameworks that are 
not only aimed at improving the mean performance of the system, but also at improving 
the system robustness and reliability. In fact, it can be argued that most of the current 
control approaches are only aimed at improving the efficiency, which can even be 
counterproductive from a robustness point of view. 
 
This paper introduces a new concept of computing traffic controls which explicitly takes 
into account the uncertainty in predicted traffic conditions. This is achieved by including 
these uncertainties explicitly in the control objective function via the predicted system 
performance variability. The overall approach is based on the concept of Model 
Predictive Control (MPC), using the current observed or estimated state of the system as 
the initial conditions for the uncertain predictions.  
 
The paper makes clear how different performance function specifications yield different 
control strategies. This is shown for a relatively simple case study. 
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1 INTRODUCTION 
Dutch transportation policy is not only aimed at achieving the largest throughput, but also 
at increasing the travel times reliability. In fact, current policy aims to achieve that 95% 
of all motorway trips in the peak hour will be on time. From the perspective of the direct 
users of the transportation users, this will mean a considerable improvement, because 
behavioral studies have already shown that besides mean travel time, the travel time 
reliability plays an considerable role in the valuation of a trip (Bogers et al,2006). 
 
Despite of this, for the deployment of most of the Dynamic Traffic Management (DTM) 
measures, we generally only take consider efficiency impacts (in terms of maximizing 
throughput, reducing emissions and noise, etc.). Little research has been done how DTM 
can be put to use to increase reliability. Amongst the few examples is the work of 
Liu (2006), showing how tolling can be used to improve reliability. 
 
This paper puts forward a new control methodology showing how to ‘control for 
reliability’. The approach is based on the concept of Model Predictive Control (MPC) 
including a rolling horizon approach. However, rather than using a deterministic 



prediction model (which is done in traditional MPC), we now use a stochastic model 
instead. As a result, the predicted performance is a random variable, rather than a single 
deterministic value.  
 

2 DESCRIPTION OF THE TRAFFIC CONTROL PROBLEM 
Dynamic Traffic Management offers many possibilities to influence traffic flow 
operations in networks. Examples are providing route information or guidance, ramp-
metering, mainline metering, tidal flow, dynamics speed limits, intersection control, etc.  
 
In this paper, we assume that the status or control settings of these measures can be 
represented by some control input u. This vector can include all kinds of control settings, 
such as the green-time, whether or not a specific lane is closed, the route advice people 
receive via the VMS, etc. Furthermore, the control will be dynamic, i.e. u = u(t).  
 
The control u(t) influences the (current and future) state x(t) of the system (this is 
expressed mathematically in the next section). We generally assume that the next state 
(say, x(t+dt)) is determined by the current state x(t), the control u(t), and any 
‘disturbances’ that may be applied (including the boundary conditions, such as traffic 
flowing into the considered network). This implies that the state captures the entire 
history of the system.  
 
In the remainder of the paper, we set out to determine the optimal control settings u*, i.e. 
the control that steers the state of the traffic network in some optimal way, according to 
some performance criteria chosen.  
 

3 MATHEMATICAL FORMULATION OF THE CONTROL PROBLEM 
In this section, we will formally describe the stochastic traffic control problem. First of 
all, we will consider the stochastic describing of the system dynamics. This is achieved 
by writing the system in the so-called continuous stochastic state-space form, i.e.: 

  (1.1) 

In Eq. (1.1), x = x(t) denotes the state vector of the system at time instant t, u = u(t) 
denote the control vector, and ω  = ω(t) denotes the white noise term. The term σ  denotes 
the error variance term. Note that the covariance matrix is defined as follows 
  (1.2) 
Note that for we assume that the noise is additive. This assumption is no restriction to the 
noise as any noise function can be written as additional function of t, x and u. 

3.1 Concept of stochastic costs 
Assume that at some time t = tk, the state x(tk) of the system is known (at least to a certain 
extent). From that time instant onward, we can compute the distribution of x(t) for t > tk, 
and sample instances from this distribution using Eq. (1.1).  
Clearly, since {t,x(t)} for t > tk is a random process, so is the cost J defined by: 
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  (1.3) 

where L denotes the so-called running cost, while φ denotes the terminal cost; H denotes 
the prediction horizon.  
 
The cost J defined by Eq. (1.3) is a random variable describing the performance of the 
system, for instance in terms of cumulative travel times or delays, throughput, average 
speeds, etc., given that from time tk to time tk+H we have applied a certain control u.  
 
Let E(X) denote the expected value of the random variable X. For stochastic control 
problems, the objective function J is generally defined by the expected cost, conditional 
on the control u that is applied: 
  (1.4) 
Besides the expected cost mostly used in stochastic control theory, we can for instance 
also define the conditional cost variability: 
  (1.5) 
Clearly, any other statistic (median, mode, skewness, kurtosis, 85% percentile, etc.) or 
combinations of statistics can be used to express the future performance of the system, 
given the current state x(tk) and the control u(s) for s > tk. In the remainder, we will use 
the symbol ϑ to express the chosen statistic describing the system performance: 
  (1.6) 

where  denotes the chosen statistic expressing the future system performance. 

3.2 Formulation of the stochastic control problem 
The resulting control problem is similar to the deterministic control problem: given the 
currently available state , the aim is to find the control u optimizing the chosen 
system performance, i.e.: 
  (1.7) 
subject to: 

  (1.8) 

 
It is important to note that the problem has been formulated as a rolling horizon problem, 
where it is assumed that the optimal control is recomputed each time a new measurement 
or state estimate becomes available. As such, the system can be made responsive to 
unpredicted changes in the system, such as incidents, bad weather conditions, etc. 

3.3 Solutions to the control problem 
The theory on stochastic control problems has been a focus of attention since the 90’s. A 
good introduction is given by Fleming and Soner (1993), focusing in particular on 
optimizing Eq. (1.4) in the case of uncertain system dynamics.  It is beyond the scope of 
this paper to give a complete overview of all available work. Maar hoe is het hier 



opgelost? Rather, we will show how the choice of different performance specifications 
will affect the optimal controls. 

4 CASE STUDY 
We will illustrate the concepts developed in this paper by a simple but not trivial, 
hypothetical example. Figure 1 shows the network considered in the case study, and the 
origin-destination relation that is considered. Note that for the sake of illustration, we will 
only consider a single origin-destination relation and the control thereof. Generalization 
to multiple origin-destination pairs is conceptually straightforward.  
 

 
Figure 1 Hypothetical network with controls u1 and u2.  
 
In the case, we consider only route guidance control. However, the methodology can be 
applied to any other kind of control (ramp-metering, main-line metering, intersection 
control, etc.). The traffic in the network is guided over the links of the network according 
to the controls u1 and u2 respectively denoting the share of traffic going into link 1, and 
the fraction of traffic flowing into link 3.  
 
Note that different link types are present in the example. We will assume that all links 
have a different (stochastic) capacity and travel time, amongst other things depending on 
the type of link. With respect to the capacity, two kinds of uncertainty will be considered. 
The ‘regular’ uncertainty due to natural variations in traffic composition, driver behavior, 
etc., and the ‘irregular’ uncertainty due to incidents, accidents, changing weather 
conditions, etc.  Besides a random capacity, we can also assume that the traffic demand is 
stochastic. It is important to note here that the nature of the variations in the demand is 
very different from that of the supply. Statistical analyses have shown the importance of 
including autocorrelation terms in the modeling of demand variations.  

4.1 Stochastic model of traffic demand and traffic operations 
Since this paper only deals with the general concept of stochastic or robust traffic control, 
we will use a rather simple model to describe network traffic conditions. It is however 
emphasized that in principle, any stochastic model (either analytical or simulation) can be 
used. More specifically, a vertical queuing model with a random capacity is used (also 
known as the QUAST model; see (Stembord,1991)). For the sake of simplicity, the 
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randomness in the capacity is for the case study only determined by the probability of an 
incident occurring. When an incident occurs, it is assumed that the link is fully blocked 
for a random period of time (uniformly distributed). Note that the incident probability is 
determined by the link type (rural link: 10%, urban link: 25% and motorway link 1% -  
erbij zetten in figuurtje?)1. Spillback is not modeled in this simple example, since it is not 
necessary to illustrate to concept. 
 
For a first traffic demand and for a fixed control law u, the dynamic stochastic model is 
ran N times, leading to N different performances J, using a fixed random seed for 
realization i (meaning that realization i will always yield the same incident 
characteristics). Based on these N realized performances, the different relevant statistics 
can be computed (e.g. mean performance, performance standard deviation, 85% 
percentile, etc.).  

4.2 Case study results 
Table 1 shows an overview of the performance of the network. The collective travel times 
have been used as the basic performance indicator. The table thus shows the mean 
collective travel times, the 95% percentile of the collective travel times, the median 
thereof, and the standard deviation. At the same time, Figures 2-4 show the optimal 
controls u1 and u2 applied during the period. 
 
Table 1 Network performance for different control objectives (objective function).  
Objective function  mean(J) median(J) F-1(0.95) std(J) 
mean(J) 3479 3398 3828 279 
median(J) 3493 3379 4123 320 
F-1(0.95) 3526 3460 3665 272 
 
Figure 2 shows the same results graphically. 
 

                                                
1 The incident probabilities have been chosen large to more clearly illustrate the approach. 

Victor Knoop� 14-10-10 16:47

Victor Knoop� 14-10-10 16:47

Deleted: Table 1

Deleted: Figure 2



 
Figure 2 Cumulative travel times per control strategy (optimizing mean performance, median 
performance and 95% performance). 
 
The differences between the results per objective function are clear. For instance, if we 
compare what happens when optimizing the median collective travel time compared to 
the mean collective travel time, we see that on average u1 decreases. This means that a 
larger part of the traffic is diverted via link 2 (motorway route). Next, we see that a 
relatively small part chooses link 3 compared to the situation where the mean is 
optimized, implying that less traffic is guided along the reliable routes. This is as 
expected, since the median is less sensitive to outliers than the median. 

 
Figure 3 Dynamics of the optimal controls u1 and u2 for the two hour simulation period when the 
mean travel time is optimized. 

Victor Knoop� 14-10-10 16:47

Victor Knoop� 14-10-10 16:47

Deleted: 2

Deleted: 3



 
Figure 4 Dynamics of the optimal controls u1 and u2 for the two hour simulation period when the 
median travel time is optimized.  
 

 
Figure 5 Dynamics of the optimal controls u1 and u2 for the two hour simulation period when the 
95% percentile travel time is optimized. 

5 CONCLUSIONS AND FUTURE WORK 
In this paper, we have proposed a new optimal control paradigm for traffic networks 
explicitly including the uncertainty of the resulting traffic operations. The approach was 
illustrated by means of a simple application example. The example shows clearly the 
impact of the control objective function on the resulting optimal control strategies. 
 

REFERENCES 
1. Fleming, W.H., and H.M. Soner (1993). Controlled Markov Processes and Viscosity 

Solutions. Springer-Verlag. 
2. H. Stembord (1991). Quality of service on the main road network in the netherlands. 

In B. Brannolte, editor, “Highway Capacity and Level of Service”, Rotterdam. 
 

Victor Knoop� 14-10-10 16:47

Victor Knoop� 14-10-10 16:47

Deleted: 4

Deleted: 5


