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Abstract:  40 
 41 
A lane-changing (LC) maneuver may cause the follower in the target lane (new follower) to 42 
decelerate and give up space, potentially affecting crash risk and traffic flow efficiency. In 43 
congested flow, a more aggressive LC maneuver occurs where the lane changer is partially next 44 
to the new follower and creates negative gaps, namely negative gap forced LC (NGFLC). 45 
Although NGFLC forms the foundation of sideswipe crashes, little has been done to address its 46 
impacts and the contributing factors. To tackle this issue, a total of 15,810 LC trajectory samples 47 
are extracted from three drone videos at different locations. These samples are categorized into 48 
NGFLC and normal LC groups for comparative analysis. Five commonly used conflict indicators 49 
are extended into two-dimensional to evaluate the crash risk of LC maneuver. The change of time 50 
gaps during LC maneuver are examined to quantify the impact of LC on traffic flow efficiency. 51 
We find that NGFLCs significantly increase crash risk, reflected by the number of hazardous LC 52 
events and potential crash areas compared to normal LC. Additionally, results reveal that both the 53 
lane changer and the new follower tend to maintain a larger time gap after NGFLCs. Factors 54 
including time headway, relative speed, and historical gaps in the target lane significantly affect 55 
NGFLC incidence. Once the movement of the leader in the original lane is taken into account, the 56 
prediction accuracy improves from 81% to 91%. The transferability tests indicate that the 57 
findings about the negative impact of NGFLC and the accuracy of its prediction model are 58 
consistent across different locations. These findings hold implications for driving assistance 59 
systems to better predict and mitigate NGFLCs. 60 
 61 
Keywords: Forced lane-changing behavior; lane-changing impact; traffic safety; flow efficiency; 62 
trajectory data analysis 63 
 64 
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1. Introduction 1 
A lane-changing (LC) maneuver typically involves interactions between the lane changer 2 

and three surrounding vehicles: the leading vehicle in the original lane (referred to as the original 3 
leader), the following vehicle in the target lane (new follower), and the leading vehicle in the 4 
target lane (new leader). Numerous studies have emphasized the adverse effects of LC maneuvers 5 
on traffic safety and traffic flow efficiency (Yun et al., 2017; Hess et al., 2020; Chen et al., 2021, 6 
Reinolsmann et al., 2021). For example, Pei et al. (2010) report that over 30% of crashes are 7 
linked to improper LC maneuvers. Zheng et al. (2011a) found that LC maneuvers could lead to 8 
speed reductions in the target lane, subsequently causing stop-go waves and traffic flow 9 
disturbances. Laval and Daganzo (2006) noted that slow-moving LC vehicles with limited 10 
acceleration are a major cause of capacity drops, resulting in decreased traffic flow rates. Given 11 
these negative impacts induced by LC maneuvers, investigating LC maneuvers is of interest in 12 
this study, particularly focusing on those that are risky and inefficient.  13 

Previous research has identified several improper LC types, such as forced LC (Yang et al., 14 
2016), unsuccessful LC (Ali et al., 2020a), and cut-in LC (Wang et al., 2019). Each LC type has 15 
demonstrated its profound impact on traffic flow. However, these studies typically assume that 16 
the lag gap in the target lane always exceeds a critical positive value during the LC maneuver, 17 
implying sufficient space for the lane changer. Indeed, this assumption of a critical positive gap 18 
does not always hold true in real-world conditions, particularly in congested traffic flow. During 19 
the study of the massive amount of empirical LC maneuvers from expressways in China, 20 
numerous negative gap forced LC (NGFLC) maneuvers were observed. The NGFLC is defined 21 
as a unique type of aggressive LC during which negative lag gaps exist at some moments. Figure 22 
1 visually depicts an NGFLC case. Specifically, from time T to T+3 in this example, the new 23 
follower refuses to yield and attempts to close the gap, creating a negative gap with the lane 24 
changer. Subsequently, the new follower decelerates from T+4 to T+5, enlarging the lag gap to 25 
avoid a sideswipe crash and allowing the lane changer to complete the LC maneuver.  26 

 27 

 28 
Figure 1 Illustration of forced lane-changing with a negative gap 29 

 30 
Although NGFLC forms the basis of sideswipe crashes, the literature has not fully 31 

investigated its identification procedure and influence on crash risk. Given that both the new 32 
follower and the lane changer undergo an aggressive LC maneuver, it is unclear how driver 33 
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behavior changes and affects the traffic flow efficiency. Naturally, if NGFLC negatively impacts 1 
traffic flow compared to normal LCs, understanding the triggers leading to NGFLC becomes 2 
imperative.  3 

Motivated by these research gaps, the primary objective of this study is to comprehensively 4 
examine NGFLC from its identification, consequences, and formulation. More specifically, we 5 
utilize three trajectory datasets from different locations and times to investigate the frequency of 6 
NGFLC. Five widely used SSMs are extended to two-dimensional to examine the impact of 7 
NGFLC on crash risk. Then, a method to quantify how the NGFLC affects the traffic flow 8 
efficiency is proposed. We also compare these findings with those derived from normal LC 9 
samples to gain a deeper understanding of the outcomes of NGFLC. Finally, Binary logit models 10 
are developed to investigate which factors and how they affect an LC decision to become an 11 
NGFLC. The research results are the first attempt to illuminate the impact of NGFLC on 12 
microscopic-level traffic flow, which has been previously overlooked. It can aid in driving 13 
assessment systems to better understand, predict, and avoid NGFLC. 14 
 15 
2. Literature review 16 

This section presents a detailed review of previous studies from two perspectives. In the first 17 
subsection, we review studies concerning forced LC, given its close relation to NGFLC. In the 18 
second subsection, we review methods employed to measure the influence of an LC maneuver on 19 
traffic flow.  20 

 21 
2.1 Modeling forced Lane-changing maneuver 22 

Hidas (2002) coined the term “forced LC (FLC)” to describe an LC maneuver based on the 23 
principle of driver courtesy. In this context, the lane changer sends a forced request to the new 24 
follower, who subsequently reduces speed and increases the initial gap to accommodate the 25 
request. His seminal work involved developing and implementing an FLC algorithm within the 26 
Simulation of Intelligent TRAnsport System (SITRAS). Simulation results from SITRAS 27 
suggested that the integration of FLC significantly enhances the realism of the flow-speed 28 
relationship. A subsequent study by Sun and Kondyli (2010) corroborated the effectiveness of 29 
FLC by developing a framework for an urban LC system that incorporated FLC, demonstrating 30 
its high accuracy in predicting travel time under congested flow conditions. 31 

Considering the significance of FLC and its prevalence in congested flow, several rule-based 32 
models have been developed to classify and predict FLC. For instance, Sun and Elefteriadou 33 
(2014) proposed an FLC model using a pre-defined rule that guides the new follower to either 34 
reject or accept the lane changer’s request when the gap in the target lane is less than the critical 35 
gap. Qu and Wang (2015) developed an FLC model in which the new follower slows down and 36 
increases the gap based on the location of the lane changer. Yang et al. (2016) categorized FLC 37 
and other LC maneuvers according to the time gap in the target lane. Specifically, an LC 38 
maneuver is deemed as FLC if the time gaps in the target lane remain constant or diminish during 39 
the LC maneuver. Similarly, Chauhan et al. (2022) suggested that the LC maneuver can be 40 
classified as FLC if the spacing headway between the new follower and the new leader expands 41 
during the LC maneuver.  42 

These studies above have made great contributions to modeling FLC, especially when the 43 
initial gap is larger than the critical gap. However, in real-world traffic situations, the critical gap 44 
may fluctuate according to different traffic conditions (Yang et al., 2019). Research is lacking on 45 
such FLC situations where the initial gap or the gap during the LC maneuver is continuously less 46 
than the critical gap (see Figure 1). To address this gap, Zhao et al. (2013) introduced the 47 
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concept of transline ride (TLR), in which the lane changer may encounter multiple new followers 1 
until the LC maneuver is completed. However, they did not propose a method for identifying 2 
NGFLC, and instead, the NGFLC samples in this study were manually extracted by watching 3 
video footage. Hence, developing a procedure for automatically classifying the NGFLC from the 4 
entire traffic flow trajectory is crucial, which will benefit future analysis.  5 

 6 
2.2 Lane-changing impact 7 

The impact of LC maneuvers on crash risk has always been an area of interest in the field of 8 
transportation. Numerous models have been proposed to assess the crash risk associated with LC 9 
maneuvers. For example, Yang et al. (2019) investigated the crash risk between the new follower 10 
and the lane changer based on TTC and found that the crash risk is higher before the lane changer 11 
crosses the lane line. Park et al. (2018) proposed a lane change risk index using surrogate safety 12 
measures to evaluate the crash risk of LC maneuvers. Comparison results revealed that the lane 13 
changer tends to be involved in a rear-end collision with the original leader in a work zone 14 
section. Xing et al. (2019) analyzed the LC crash risk on toll roads based on a two-dimensional 15 
TTC and concluded that manual toll collection vehicles notably heighten the crash risk. 16 
Considering various LC types, Chen et al. (2021) divided the LC process into sixteen patterns 17 
based on the vehicle type, discovering a robust correlation between crash risk and factors such as 18 
gap distance, longitudinal speed, and acceleration. Discretionary and mandatory LC have been 19 
investigated separately for their crash risk (Ali et al., 2020, Ali et al., 2019). In addition to 20 
examining the impact of LC on crash risk, various models have been proposed to identify the 21 
factors contributing to risky LC behavior, including statistic models (Adanu et al., 2021, Ali et 22 
al., 2022, Yang et al., 2019, Ouyang et al., 2023), and data-driven models (Chen et al., 2019, Shi 23 
et al., 2019). 24 

On the other hand, LC maneuver in congested flow can disrupt traffic flow capacity due to 25 
slow insertion and abundant acceleration (Duret et al., 2011; Marczak et al., 2015, Leclercq et al., 26 
2016, Chen et al., 2023). Empirical studies have indicated that LC maneuvers might induce speed 27 
reductions of the new follower, leading to oscillation. 12 out of 18 oscillations in the NGSIM 28 
dataset are caused by LC maneuvers (Zheng et al. (2011b)). Chen et al. (2022) observed that 29 
some new followers might reduce their speed when they notice a lane changer who starts to shift 30 
its lateral position in the adjacent lane. 31 

The abovementioned studies could serve as valuable references for evaluating the impact of 32 
LC maneuvers. Lee et al. (2006) suggested that lateral overlap between the lane changer and the 33 
new follower occurs due to inappropriate decision-making by the lane changer. For simplicity, 34 
they treated this as the difference in flow ratio between the target and original lanes. They 35 
incorporated it into the Average Flow Ratio index proposed by Chang and Kao (1991) to estimate 36 
the crash risk. Simulation results reported by Ben-Akiva et al. (2006) implied that FLC 37 
significantly influences the macroscopic outcomes of traffic flow. Zhao et al. (2013b) found that 38 
the basic LC characteristics, such as LC time, LC velocity, and the number of affected vehicles, 39 
significantly differ between FLC and other LC maneuvers. However, a detailed understanding of 40 
the microscopic consequences and causes of NGFLC remains unclear.  41 
 42 
3. Data and negative gap forced lane-changing detection 43 
3.1 Data collection 44 

The research team conducted drone video recordings at three merging segments in China. 45 
The first site, Yintian Road in Nanjing, was recorded over a week from December 12 to 46 
December 19, 2023. The recording period for each day was chosen during the morning peak 47 
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hours from 7:30 am to 9:30 am to capture a higher frequency of LC maneuvers. The data from 1 
this site serves as the modeling dataset, namely dataset 1. The other two sites aim to assess 2 
whether the presence, impact, and occurrence mechanism of NGFLC, as obtained in the 3 
modeling dataset, can be observed at different locations and cities. Specifically, the second site 4 
was also located in Nanjing but on a different expressway known as Xianlin Road. For this site, 5 
the drone recordings were conducted on July 28, 2021, from 7:30 am to 9:00 am. The third 6 
merging segment was located in another city, Chongqing. The data collection for this site was 7 
conducted during peak hours on December 15, 2023, from 7:30 am to 10:30 am. All recordings 8 
were made under sunny weather conditions. Drones were flown at an altitude of 300m, capturing 9 
400m road segments. Figure 2 illustrates the locations of these three study sites. The following 10 
paragraphs provide a brief overview of the trajectory data extraction procedure. For detailed 11 
methodology, readers are referred to our previous studies (Chen et al., 2021, Wan et al., 2020). 12 
The trajectory extraction method includes five steps: video stabilization, vehicle detecting, 13 
vehicle tracking, lane detecting, and raw data smoothing.  14 

 15 

 16 
Figure 2 Three study sites 17 

 18 
Firstly, the stabilization of raw drone video is required due to potential drone camera 19 

shaking caused by control maneuvers or wind during high-altitude recording. Each video’s initial 20 
frame is used as a baseline frame. Then, the Temporally Robust Global Motion Compensation 21 
model is adopted (Li et al. 2019) to calculate transformation matrixes, aligning subsequent frames 22 
to the baseline frame. This process yields adjusted frames, ensuring vehicle movements in the 23 
video remain unaffected by the instability of the camera. Figure 3 illustrates an example of this 24 
process, where the left image is the baseline frame, the center shows a mid-recording frame, and 25 
the right image is the adjusted frame. In Figure 3(b), a noticeable rotation of the road compared 26 
to the baseline frame is observed. The stabilization process aligns the road position in the 27 
adjusted frame with the baseline frame, as shown in Figure 3(c).  28 
 29 
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 1 
Figure 3 An example of the stabilization process 2 

 3 
Next, the You Only Look Once v4 (YOLOv4) algorithm is employed for vehicle detection 4 

in each frame. The YOLOv4 model is trained on 500 drone pictures from the first recording site, 5 
with vehicles manually marked within rectangular boundaries. Using the well-trained model, the 6 
four corner points of the rectangle bounding box for each vehicle can be obtained. To quantify its 7 
detection accuracy, one vehicle will be marked with two bounding boxes, one for manually 8 
marking and one for automatically detecting. The detection error of the trained YOLOv4 model is 9 
measured by the Mean Squared Error (MSE) of the differences in the center points between 10 
detected and ground truth bounding boxes. For the first recording site, 20 drone images are 11 
randomly selected from drone videos. In these images, a total of 1,059 vehicles are manually 12 
marked and automatically detected by YOLOv4 with bounding boxes, respectively. Of these, the 13 
MSE for the trained YOLOv4 is 0.04m. For the other two sites, the MSE values were 0.06m and 14 
0.09m across 924 and 1,142 vehicles in randomly selected images, respectively. These test results 15 
demonstrate that our detecting model is good enough to detect vehicle positions accurately. 16 

Subsequently, the movement of each vehicle is tracked frame by frame. Considering the 17 
drone’s camera records at 30 fps, the time step for tracking the vehicle trajectory is set at 1/30 18 
second. Traffic lanes are identified using the method proposed by Liu et al. (2020). Thus, each 19 
vehicle can be assigned to its corresponding lane, which facilitates the identification of the LC 20 
event.  21 

The raw trajectories derived from the previous steps contain considerable white noise. Minor 22 
positional deviations over short time intervals can cause fluctuations in speed and acceleration 23 
profiles. To eliminate noise in these raw trajectories, we employ the Wavelet Transform method 24 
recommended by Chen et al. (2021). This approach ensures that the location, speed, and 25 
acceleration of each vehicle at every time interval remain within realistic limits. To check the 26 
accuracy of the smoothed trajectories, we randomly selected two hours of trajectory data, and 27 
compared the range of acceleration before and after smoothing with the recommended range (-28 
6m/s2 to 5m/s2) (Montanino and Punzo, 2013, Thiemann et al., 2008). It is found that 98.25% of 29 
time intervals of acceleration are out of the recommended range before smooth. After smoothing, 30 
only 0.067% of time intervals are outside the recommended range, indicating that noises in the 31 
raw data have been well addressed, resulting in a smoothed trajectory conducive to high-32 
precision analysis. Figure 4 shows an example of obtained vehicle trajectories.  33 

In total, we obtain 67,519 vehicles’ trajectories from 14 hours of recordings at study site 1. 34 
Additionally, 7,071 vehicles’ trajectories from 1.5 hours of recordings at study site 2 and 13,154 35 
vehicles’ trajectories from 3 hours of recordings at study site 3 are obtained. Each vehicle 36 
trajectory data includes the lateral location (m), longitudinal location (m), speed (m/s), 37 
acceleration (m/s2), lane number, space headway (m), and time (s). The speed and acceleration 38 
for each vehicle are calculated based on the location information at each time interval. 39 

 40 
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 1 
Figure 4 (a) An example of vehicles’ trajectories in a single lane; (b) speed and (c) acceleration of 2 

a vehicle before and after smoothing 3 
 4 
3.2 Identification of negative gap forced lane-changing 5 

This section presents a procedure for identifying NGFLG. The identification process 6 
consists of two steps: (1) extracting LC samples from the trajectory dataset and (2) establishing a 7 
criterion to determine the occurrence of negative gaps in the extracted LC samples. 8 

 9 
3.2.1 Lane-changing identification 10 

This subsection details the extraction procedure for LC samples. Given that an LC process is 11 
a time series trajectory, we set three critical time points to locate it, which are the start, insertion, 12 
and end moments. These time points are relevant and will be defined below. Figure 5 (a) 13 
provides an example of these points. After describing these points, we will show how to extract 14 
them numerically. 15 
 The start moment of the LC maneuver is marked by “A” in Figure 5 (a). Consistent with 16 

previous studies (Ali et al., 2018; Yang et al., 2019), we characterized the LC start moment 17 
as the instance when the lane changer suddenly changes its lateral movement in the original 18 
lane.  19 

 The insertion of the target lane is marked by “B” in Figure 5 (a). This is defined as the 20 
instance when the center of the LC vehicle reaches the edge of the target lane.  21 

 The end moment of the LC maneuver is marked by “C” in Figure 5 (a). After the lane 22 
changer is successfully inserted into the target lane, it will adjust the speed and lateral 23 
position to the center of the target lane. Finally, the LC maneuver ends when the lane 24 
changer’s movement attains stability in the target lane. Therefore, we determine this 25 
stabilization point as the end moment of the LC maneuver. 26 
The Wavelet Transform with a Mexican hat function is employed to identify the start and 27 

end moments of the LC maneuver automatically (time points A and C). This method has 28 
demonstrated excellent efficiency in capturing spatial information in time series data (Zheng et 29 
al., 2011; Chen et al., 2014, Ali et al., 2020). Specifically, the lateral moment of the lane changer 30 
is transformed into a wavelet-based curve, as shown in Figure 5 (b). The curve’s maximum and 31 
minimum points correspond to the first and second sudden shifts in the lateral moment, 32 
representing the start and end moments of the LC maneuver, respectively. Since our trajectory 33 
extraction provides the location of each lane edge, the time point B for each LC sample can be 34 
easily obtained by calculating the lane changer’s distance to the lane edge equation. Once the 35 



9 
 

distance reaches zero, time point B is identified. Following this procedure, we obtained 20,748 1 
LC events in dataset 1, 2,232 LC events in dataset 2, and 1,967 LC events in dataset 3.  2 
 3 

 4 
Figure 5 Determination of three critical time points during the LC maneuver: (a) lane changer’s 5 

lateral trajectory; (b) transferred curve based on Wavelet-Transform 6 
 7 

3.2.2 Identification of negative gap forced lane-changing  8 
With a focus on the LC’s impact, a complete LC sample should include the lane changer and 9 

the surrounding vehicles. Therefore, for each LC event extracted previously, we correspondingly 10 
retrieve vehicles’ trajectories in the target and original lanes. Hence, each complete LC sample 11 
incorporated four vehicles: the lane changer, the new follower, the new leader, and the original 12 
leader. For all the candidate LC samples, we implement the following two rules to filter out 13 
unsuitable samples: 14 
 Rule 1: The new follower and the new leader must be the same vehicles from time points A 15 

to C. 16 
 Rule 2: The original leader must be in the same vehicle from time points A to B. 17 

Regarding an LC sample, rule 1 ensures that interactions between the lane changer and the 18 
vehicles in the target lane are not affected by other LC maneuvers. As a result, 3,841 LC samples 19 
from dataset 1, 567 LC samples from dataset 2, and 349 LC samples from dataset 3 are removed 20 
after applying this rule. 21 

Rule 2 is a relaxed version of Rule 1 that allows us to gain insights into how the original 22 
leader affects the lane changer’s behavior. By applying these rules, we end up with 12,815 LC 23 
samples in dataset 1, 1,617 LC samples in dataset 2, and 1,378 LC samples in dataset 3.  24 

Next, we develop an indicator called ΔLon to identify whether the LC vehicle has a negative 25 
gap with the new follower:  26 
 27 

( ) ( ) ( )LC FVLon t X t X t∆ = −                                                                                                                  (1) 28 

 29 
where XLC(t) is the rear point of the LC vehicle at time t, and XNF(t) is the front point of the new 30 
follower at time t. 31 
 32 
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 1 
Figure 6 Two examples: (a) an example of NGFLC; and (b) an example of normal LC 2 

 3 
Figure 6 (a) and (b) illustrate two examples of ΔLon (t) with negative and positive values, 4 

respectively. A negative value of ΔLon (t) indicates that the lane changer’s rear bumper is behind 5 
the new follower’s front bumper at time t, implying that the two vehicles are laterally overlapped. 6 
If any negative value of ΔLon exists throughout the entire LC maneuver, we classify this LC 7 
maneuver as NGFLC. On the contrary, if ΔLon remains positive throughout the entire LC 8 
maneuver, it is classified as a normal LC.  9 

Table 1 presents the classification results of each trajectory dataset. We find that 33%, 36%, 10 
and 28% of LC samples are identified as NGFLC in dataset 1, dataset 2, and dataset 3, 11 
respectively. These similar and considerable proportions of NGFLCs highlight that NGFLCs are 12 
prevalent in the traffic flow. In the following section, we will delve into the consequences of 13 
NGFLC and explore how it differs from normal LC.  14 
 15 
Table 1 Identification results of NGFLC at three datasets  16 
 Dataset 1 Dataset 2 Dataset 3 
Total LC samples 12815 1617 1378 
Normal LC samples   8586 1026 992 
NGFLC samples 4229 591 386 
Percentage of NGFLC 33% 36% 28% 

 17 
4. Methodologies  18 

To achieve a comprehensive understanding of the NGFLC behavior and its differences from 19 
normal LC behavior, safety and efficiency metrics are initially introduced in this section. 20 
Specifically, five surrogate safety measures (SSMs) are introduced in Section 4.1, and a method 21 
to quantify the impact of LC on traffic flow efficiency is proposed in Section 4.2. To unveil 22 
which factors and how they characterize an LC decision as an NGFLC maneuver, binary logit 23 
models are established in Section 4.3.  24 
 25 
4.1 Safety measurements 26 
4.1.1 Time-based SSMs 27 

In previous studies, the conventional TTC has been widely utilized to assess the potential 28 
crash risk between two consecutive vehicles (Biswas et al., 2021; Ding et al., 2019; Gu et al., 29 
2019). However, this approach assumes that the two vehicles are moving in the same lane, which 30 
may not always apply in some scenarios where collisions occur at different angles. To address 31 
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this limitation, researchers have extended safety measures into two dimensions, yielding 1 
satisfactory results (Venthuruthiyil and Chunchu, 2022; Ward et al., 2015; Xing et al., 2019). 2 
Given that our study focuses on the LC scenario, where conflict with angles could arise, we 3 
extend the conventional TTC into two-dimensional to evaluate crash risk during the LC 4 
maneuver. 5 

In the two-dimensional TTC, two successive vehicles are represented as rectangular 6 
bounding boxes. Similar to the conventional TTC, these bounding boxes move in accordance 7 
with their current speed and direction. The two-dimensional TTC measures the time it would take 8 
until the first intersection moment of these two bounding boxes, quantifying the current risk 9 
level. Clearly, a smaller TTC value suggests a more dangerous situation. On the other hand, if 10 
two bounding boxes do not intersect, the TTC value is considered to be infinite. A threshold of 11 
TTC, abbreviated as TTC*, is used to differentiate between safe and conflict situations. Herein, 12 
we use four TTC* values ranging from 1s to 4s with 1s intervals. An LC sample is categorized as 13 
a conflict if the TTC value is less than the TTC* at any moment during the LC maneuver.  14 

Considering that LC maneuvers typically last from 3s to 15s (Moridpour et al., 2010b), we 15 
adopt two variants of two-dimensional TTC called Time Exposed TTC (TET) and Time 16 
Integrated TTC (TIT) to evaluate the crash risk for a complete LC sample. Specifically, the TET 17 
value is determined by the total dangerous duration wherein the TTC value falls below the TTC* 18 
during the LC maneuver (Minderhoud and Bovy, 2001), which can be calculated as follows:  19 

 20 

( )
0

N

i i
t

TET tδ τ
=

= ⋅∑                                                                                                                            (2) 21 

 22 
where N is the number of time intervals, each time interval is τ (0.03s in our study), during the i-23 
th LC maneuver. δi(t) is a switching variable between 0 and 1. Specifically, if TTCi(t) less than 24 
TTC*, δi(t) equals 1, otherwise, δi(t) equals 0.  25 

TIT measures the integral of the TTC profile below the threshold during the LC maneuver, 26 
allowing to express the crash risk severity, which can be calculated as follows: 27 
 28 

( ) ( )* *

0
, 0

N

i i i
t

TIT TTC TTC t TTC t TTCτ
=

 = − ⋅ ∀ ≤ ≤ ∑                                                                         (3) 29 

 30 
4.1.2 Deceleration-based SSMs 31 

This study uses two deceleration-based SSMs to evaluate the kinematic characteristics for 32 
crash risk avoidance during the LC maneuver (Cunto and Saccomanno, 2008). The first conflict 33 
indicator, Deceleration Rate to Avoid a Crash (DRAC), measures the required deceleration rate 34 
of the following vehicle to match the speed of the leading vehicle to avoid a crash. Traditionally, 35 
this indicator quantifies the crash risk between two vehicles moving in the same direction, which 36 
can be calculated as follows: 37 

 38 

( )2

,

0,

f l
f l

V V
if V VDRAC D

otherwise

 −
 >= 



                                                                                                          (4) 39 

 40 
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where Vf and Vl are the speed of the following and leading vehicles, respectively, D is the 1 
distance between the front bumper of the following vehicle and the rear bumper of the leading 2 
vehicle.  3 

In the LC scenario, the formula of DRAC needs to be redefined. Specifically, when the 4 
rectangular bounding boxes of two vehicles do not intersect along their current direction and 5 
speed, meaning that their two-dimensional TTC value is infinite, the DRAC equals zero. On the 6 
other hand, if there is a potential intersection position, the distance from the following bounding 7 
box to that intersection point will be considered as the remaining distance, denoted as D2d. Under 8 
this context, the DRAC is defined as the required deceleration rate for the following vehicle to 9 
completely stop before reaching the potential intersection position, which can be rewritten as 10 
follows: 11 
 12 

( )
( )
( ) ( )

2

2

,

0,

f
i

i d

V t
if TTC tDRAC t D t

otherwise

   ∈= 



                                                                                                    (5) 13 

( ) ( ) ( )2d i fD t TTC t V t= ⋅                                                                                                                          (6) 14 

 15 
When the value of DRAC exceeds the maximum available deceleration rate (MADR), the 16 

following vehicle is considered to be in a traffic conflict. Similar to previous studies, four MADR 17 
values ranging from 2m/s2 to 5m/s2 with 1m/s2 interval are used in this study. An LC sample is 18 
categorized as a conflict LC sample if the DRAC value is larger than the MADR value at any 19 
moment during the LC maneuver.  20 

An improved indicator is adopted to evaluate the probability of conflict moments identified 21 
by DRAC during the LC maneuver, namely the Crash Potential Index (CPI). The formula of CPI 22 
is given as follows: 23 
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 26 
where θi(t) is a switching variable between 0 and 1, specifically, if DRACi(t) is large than 27 
MADR, θi(t) equals 1, otherwise, θi(t) equals 0.  28 
 29 
4.2 Efficiency measurements 30 

In previous studies, the term “void” refers to the extra time gap that arises during the LC 31 
maneuver. It has been used to assess the impact of LC on traffic flow capacity (Chen and Ahn, 32 
2018; Laval and Daganzo, 2006; Leclercq et al., 2016). In practice, the void may be closed or 33 
even reduced for several reasons, such as aggressive behavior or congested flow (Chen et al., 34 
2020). Building on the definition of the void, we measure the change in time gap during the LC 35 
maneuver to capture the impact of LC on traffic flow efficiency for both the lane changer and the 36 
new follower.  37 

We define the void created by the lane changer as ΔOLC, which can be calculated as below: 38 
 39 
ΔOLC = ONL-LC – INL-LC                                                                                                                                                                            (8) 40 
 41 



13 
 

where ONL-LC is the final time gap between the new leader and the lane changer at the end 1 
moment of LC, and INL-LC is the initial time gap between the new leader and the lane changer at 2 
the insertion moment.  3 

Figure 7 provides two examples for Equation (8). Figure 7 (a) shows a scenario where the 4 
lane changer increases the time gap after the LC maneuver, resulting in a positive value of ΔOLC. 5 
This positive value reduces the traffic flow capacity. Figure 7 (b) shows an opposite situation 6 
where the lane changer decreases the time gap, resulting in a negative value of ΔOLC. This 7 
negative value enhances the traffic flow capacity.  8 

 9 

 10 
Figure 7 Two examples for the quantification of the changing process of the void created by the 11 

lane changer (a) example 1; (b) example 2 12 
 13 
The second metric, denoted as ΔONF, quantifies the void caused by the new follower, which 14 

can be calculated as below: 15 
 16 
ΔONF = OLC-NF – INL-NF                                                                                                                             (9) 17 
 18 
where OLC-NF is the final time gap between the lane changer and the new follower at the end 19 
moment of LC, and INL-NF is the initial time gap between the new leader and the new follower at 20 
the start moment of LC.  21 

Figure 8 provides two examples for Equation (9). It follows that a larger value of ΔONF 22 
indicates that the new follower is more likely to create an extra time gap compared to its initial 23 
driving behavior, which can negatively affect the traffic flow efficiency.  24 

 25 

 26 
Figure 8 Two examples for the quantification of the changing process of the void created by the 27 

new follower (a) example 1; (b) example 2 28 
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4.3 Binary logit model 1 
Considering the fact that the outcome of an LC decision in our case is either an NGFLC or a 2 

normal LC, we use a binary variable Y to capture this outcome. Y equals 1 if the LC decision 3 
leads to NGFLC and 0 otherwise. Let X represent the vector of independent variables, which 4 
corresponds to the current traffic conditions when the lane changer makes its LC decision. A logit 5 
function is used to generate a predicted value of Y under the impact of X. Thus, we have the 6 
following expressions for the binary logit model. 7 
 8 
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 11 
where α is the intercept, X is the vector of independent variables consisting of x1, x2 ,…, xn (e.g., 12 
relative speed, time headway, etc.), β is the vector of estimated coefficients, ε is the error term, 13 
and p(1|X) is the predicted probability that the LC decision under a given X will lead to NGFLC. 14 

We evaluate the proposed models from their fitting performance and prediction 15 
performance. Specifically, the Akaike information criterion (AIC), as suggested by Araike 16 
(1998), is used to compare the fitting performance of different models, which can be computed as 17 
follows: 18 
 19 

( )2 2AIC n L θ= −                                                                                                                                   (12) 20 

 21 
where n is the number of independent variables, L(θ) is the log-likelihood at convergence. The 22 
model with a lower AIC is considered the better model. 23 

To compare the predicted values of the models with their ground truth, we use a confusion 24 
matrix, which includes four basic elements: true positive (TP), false positive (FP), false negative 25 
(FN), and true negative (TN). Based on these four elements, three indicators, Recall, False Alarm 26 
Rate (FAR), and F-score, are calculated to describe and compare the models’ prediction 27 
performance.  28 
 29 
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 33 

5. Results 34 
In this section, we first present the consequences of NGFLC on both crash risk and traffic 35 

flow efficiency and also compare these outcomes with those of normal LC, which could facilitate 36 
an in-depth analysis of NGFLC (Section 5.1). Then, the contributing factors and how they 37 
characterize an LC decision as an NGFLC maneuver are discussed in Section 5.2. The analysis in 38 
this section is only based on dataset 1.  39 
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5.1 Crash risk analysis  1 
This study categorizes the potential crash risks present in both original and target lanes 2 

during the LC maneuver into four distinct groups. These groups are:  3 
 Group 1: the new follower and the lane changer; 4 
 Group 2: the new follower and the new leader; 5 
 Group 3: the lane changer and the new leader; 6 
 Group 4: the lane changer and the original leader. 7 
For each Group, TTC and DRAC are first applied to all LC samples to identify conflict LC 8 

samples, respectively. The results are given in Table 2. From these conflict LC samples 9 
identified through TTC and DRAC, the percentages of NGFLC and normal LC samples are 10 
shown in Figure 9 and Figure 10, respectively. Detailed discussions of these findings are 11 
provided below. 12 

 13 

 14 
Figure 9 Percentages of NGFLC and normal LC in conflict LC samples identified by TTC: (a) 15 

Group 1; (b) Group 2; (c) Group 3; (d) Group 4 16 
 17 
For Group 1, Table 2 suggests that 10.53% of LC samples result in conflict situations when 18 

the TTC* is set at 1s. Among these conflict LC samples, 88% are identified as NGFLCs, as 19 
shown in Figure 9(a). Given that a TTC value below 1s is indeed dangerous since it may not 20 
provide enough time to avoid a crash, this result highlights that NGFLC is responsible for a 21 
predominant part of the highly risky Group 1 during LC maneuvers.  22 
 23 
Table 2 Percentage of conflict LC samples identified by TTC and DRAC 24 

SSMs Threshold Percentage of conflict LC samples to total LC samples (%) 
Group 1 Group 2 Group 3 Group 4 

TTC 

1s 10.53 0.41 6.01 0.82 
2s 16.69 2.57 10.61 4.87 
3s 26.14 5.85 17.01 8.91 
4s 35.11 10.69 23.09 15.12 

DRAC 

2m/s2 19.24 6.07 12.8 9.20 
3m/s2 11.35 3.46 8.29 5.06 
4m/s2 6.21 1.37 4.19 2.73 
5m/s2 2.98 0.02 1.92 0.88 

 25 
Regarding Group 2, Table 2 reveals that only 10.69% of LC samples are dangerous when 26 

we set the TTC* at 4s. This proportion further reduces to 0.41% when TTC* is reduced to 1s. 27 
Figure 9(b) suggests that the proportion of normal LC samples to these conflict LC samples is 28 
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relatively small, ranging from 3.84% to 11.38%. This finding is reasonable because the new 1 
follower must maintain a large gap from its leader to accommodate the lane changer during 2 
normal LC maneuvers. However, when the lane changer conducts an NGFLC maneuver, the new 3 
follower suffers a higher crash risk with its leader, which can be inferred by the significant 4 
difference between the orange and blue bars in Figure 9(b). This finding provides crucial 5 
microscopic insight into a novel rear-end crash formation mechanism, diverging from previous 6 
studies that primarily concentrated on two crash targets in the target lane: (1) potential crash risk 7 
between the new follower and the lane changer; (2) potential crash risk between the lane changer 8 
and the new leader (Gu et al., 2019; Yang and Ozbay, 2011). Our study indicates that a lane 9 
changer in the adjacent lane could trigger a rear-end collision in the target lane. A possible 10 
explanation for this result is that the new follower pays much attention to the lane changer since 11 
they are laterally adjacent. Consequently, the movement of the new leader has been largely 12 
ignored by the new follower, leading to an increase in the crash risk.  13 

Figure 9(c) presents the crash risk of Group 3. As we can see from this figure, the orange 14 
bar is consistently higher than the blue bar for all TTC* values. This pattern indicates that 15 
NGFLCs are more likely to create risky situations between the lane changer and the new leader. 16 
Similarly, Figure 9 (d) shows comparable trends in Group 4, suggesting that during NGFLCs, 17 
the interactions between the LC and the original leader are more dangerous before insertion than 18 
in normal LCs. 19 
 20 

 21 
Figure 10 Proportion of NGFLC and normal LC in conflict LC samples identified by DRAC: (a) 22 

Group 1; (b) Group 2; (c) Group 3; (d) Group 4 23 
 24 

Figure 10 reveals that the percentage of NGFLC samples in each Group notably exceeds 25 
that of normal LC samples. This observation is consistent with the LC crash risk assessment 26 
using TTC. Moreover, it implies that vehicles involved in NGFLC require a more significant 27 
deceleration effort to avoid crashes effectively. 28 

To evaluate the severity and frequency of crash risk during a complete LC maneuver, we 29 
calculate the TIT, TET, and CPI for all conflict LC samples. The results are given in Figure 11. 30 
Generally, the average TET values for NGFLC under various thresholds are notably higher than 31 
those for normal LC across all Groups. This result indicates that NGFLCs tend to induce longer 32 
hazardous situations for surrounding vehicles compared to normal LCs. Similarly, in each Group, 33 
the average TIT and CPI values for NGFLC are both larger than those for normal LC, indicating 34 
a higher potential for crash severity during NGFLC maneuver.  35 
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 1 
Figure 11 TET, TIT, and CPI for different Groups 2 

 3 
5.2 Traffic flow efficiency analysis 4 

This section evaluates the impact of NGFLC and normal LC on traffic flow efficiency using 5 
the measures outlined in Section 4.2. Figure 12 (a) shows the void created by the lane changer 6 
upon entering the target lane. The red and green boxplots in this figure represent NGFLC and 7 
normal LC, respectively. For NGFLCs, the average time gap for the lane changer is 1.4s at the 8 
insertion moment. Then, it rises to 2.6s at the end moment. In contrast, normal LCs significantly 9 
increase the average time gap from 1.4s to 1.8s. A paired t-test is applied to check whether the 10 
time gap increases significantly between NGFLC and normal LC samples. The test result 11 
confirms that the lane changer is significantly more likely to create voids after NGFLC (Average 12 
ΔOLC = 1.2s) than after normal LC (Average ΔOLC = 0.2s), thus exerting a more substantial effect 13 
on traffic flow efficiency. 14 

 15 

 16 
Figure 12 Changing pattern of time gap under NGFLC and normal LC on dataset 1 for (a) the 17 

lane changer and (b) the new follower 18 
 19 

Figure 12 (b) illustrates changes in the new follower’s time gap during LC maneuvers. It 20 
can be observed that the average time gap of the new follower at the start moment of NGFLCs 21 
(2.4s) is smaller than that of normal LCs (2.9s). Furthermore, the new follower tends to maintain 22 
a larger time gap after NGFLC (2.3s) compared to that after normal LC (1.9s). A paired t-test 23 
reveals that the average change value in the new follower’s time gap (ΔONF) after NGFLC (-0.1s) 24 
is significantly lower than after normal LC (-1.0s). This finding suggests that the willingness of 25 
the new follower to catch up with the lane changer is more likely to be restricted after 26 
experiencing NGFLC. 27 
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Indeed, several previous studies have also stated that the lane changer, as well as its new 1 
follower, both have a larger probability of creating voids in the target lane during the LC 2 
maneuver, resulting in the reduction of traffic flow capacity (Chen and Ahn, 2018; Marczak and 3 
Buisson, 2014; Oh and Yeo, 2015). Our above findings are similar to these empirical findings. 4 
The findings suggest that even when the assumption of the bounded acceleration and the free 5 
speed do not meet in the real traffic flow, the voids can still be induced during the LC maneuver. 6 
Most importantly, the current results here provide new insights into the literature by 7 
demonstrating that NGFLC, compared to normal LC, maybe the primary reason for the void 8 
creation. It is recommended that future efforts should be devoted to investigating its relation to 9 
some critical traffic phenomena, such as oscillation and capacity drop.  10 

 11 
5.3 Performance of binary logit models 12 

In the literature, the focus for analyzing LC maneuvers has typically been on the vehicles’ 13 
information in the target lane, while information pertaining to the original lane is often 14 
overlooked. For the purpose of comparison, we develop two binary logit models. Table 3 15 
presents the definitions and description statistics of the candidate independent variables used in 16 
these two models. The rejected gap in this table is calculated by counting the number of gaps 17 
presented to the lane changer before it initiates the LC maneuver. Specifically, the first model 18 
considers only information from the target lane (model 1), while the second enhanced model 19 
includes the leader’s information in the original lane (model 2). The Pearson correlation test is 20 
adopted for each pair of candidate variables to avoid multicollinearity. The results show that all 21 
correlation values are less than 0.4, indicating non-significant collinearity is found among the 22 
candidate variables.  23 

 24 
Table 3 Definition and description of selected independent variables 25 
Variables  Description  Mean S.D. Min. Max. 
Variables for the target lane  
TNL-NF Time headway between the new leader and new 

follower on the target lane (s) 
2.1 2.9 0.11 10.2 

Rg The number of rejected gaps 3.7 2.8 0 11 
Mgaps The average value of rejected gaps (m) 7.2 5.7 2.8 22.3 
V NL-NF The speed difference between the new leader and the 

new follower on the target lane (m/s) 
0.6 2.9 -11.3 11.6 

VLC-NF The speed difference between the lane changer and 
the new follower on the target lane (m/s) 

0.3 4.1 -9.3 10.4 

Variables for the original lane 
TLO-LC The time headway between the leader in the original 

lane and the lane changer (s) 
1.3 1.5 0.1 8.5 

VLO-NL The speed difference between the leader in the 
original lane and the leader in the target lane (m/s) 

-0.3 2.5 -8.9 11.3 

ALO-LC The acceleration difference between the leader in the 
original and the lane changer (m/s2) 

-0.4 1.2 -4.3 2.1 

 26 
Table 4 presents the results related to the developed binary logit models. The parameter 27 

time headway in the target lane (TNL-NF) is negatively associated with the probability of NGFLC. 28 
It indicates that NGFLC is more likely to occur when the lane changer decides to change lanes 29 
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with a small time headway in the target lane. This result is consistent with the earlier findings in 1 
Figure 10 (b), which demonstrate that the average TNL-NF for NGFLCs is smaller than that for 2 
normal LCs. In most of the previous studies, a small gap in the target lane leads to two 3 
consequences: either the lane changer rejects this gap (Marczak et al., 2013), or the lane changer 4 
accepts it but aborts the LC maneuver when it deems the conditions in the target lane are 5 
unsuitable to complete the following LC maneuver (Ali et al., 2020). Our finding offers new 6 
insight into the outcome of accepting a small gap. Specifically, the lane changer will accept it and 7 
attempt to yield the new follower to a slow speed to provide a larger gap by laterally overlapping 8 
with the new follower.  9 
 10 
Table 4 Estimation results mode 1 and model 2 11 
Variables Model 1  Model 2 

Mean SE. P-value Mean SE. P-value 
Constant 3.4 0.2 <0.001 3.8 0.2 <0.001 
TNL-NF -0.8 0.1 <0.001 -1.5 0.1 <0.001 
Rg 0.6 0.3 <0.001 0.9 0.2 <0.001 
Mgaps -0.3 0.02 <0.001 -0.5 0.04 0.002 
V NL-NF 1.7 0.4 <0.001 2.1 0.3 <0.001 
V LC-NF 0.9 0.1 0.002 0.6 0.1 <0.001 
TLO-LC - - - -0.7 0.1 <0.001 
VLC-LO - - - 1.6 0.2 <0.001 
ALC-LO - - - 3.2 0.5 <0.001 
VNL-LC - - - -1.5 0.1 <0.001 
Model fit statistics  
Number of 
observations  

12815 12815 

AIC  4517 3142 
 12 
The positive coefficient of the number of rejected gaps (Rg) indicates that the probability of 13 

NGFLC increases with an increase in Rg. Moreover, the negative coefficient of the average value 14 
of rejected gaps (Mgaps) suggests that the lower Mgaps lead to a higher probability of NGFLC. 15 
These findings imply that when a lane changer, after repeatedly rejecting small gaps in the target 16 
lane, tends to become more impatient and is more likely to conduct an NGFLC. Previously, some 17 
studies have focused on why lane changers reject or accept a presented gap in the target lane. The 18 
results of this study emphasize that the lane changer’s rejection behavior may affect its following 19 
LC maneuver. Hence, the gap acceptance theory should further incorporate the lane changer’s 20 
historical rejection behavior to improve the accuracy of predictions.  21 

Now, we examine the relative speed of the new follower to the new leader (VNL-NF) and to 22 
the lane changer (VLC-NF). Large values of these variables indicate that the new follower is 23 
quickly approaching both the new leader and the lane changer. In this context, Yang et al. (2019) 24 
found that a large gap in the target lane is required for the lane changer to decide on an LC 25 
decision. In our study, we are interested in how the two variables affect the LC maneuver if the 26 
lane changer insists on changing lanes. A positive relationship between the variables of VFV-LV 27 
and VFV-LC and the probability of NGFLC is observed. It indicates that an LC decision is more 28 
likely to result in an NGFLC when the values of VFV-LV or VFV-LC are higher. This finding is 29 
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consistent with our earlier results in Section 4.2.1, which indicated that NGFLC is more 1 
hazardous than normal LC since a larger value of speed difference poses a significant crash risk.  2 

Regarding the relation between the lane changer and the original leader, we find that the 3 
coefficient of their time headway (TLO-LC) is negative. This implies that a smaller time headway 4 
to the original leader increases the likelihood of NGFLC. Furthermore, the positive coefficients 5 
of their relative speed (VLC-LO) and relative acceleration (ALC-LO) indicate that the faster the lane 6 
changer, the larger probability the LC decision will result in NGFLC. It is reasonable that when 7 
the lane changer is quickly approaching the original leader, it is more likely to execute an urgent 8 
LC maneuver to avoid collision with the original leader. This LC intention increases the 9 
frequency of NGFLC.  10 

The relative speed between the new leader and the original leader (VNL-LO) is positively 11 
associated with the probability of NGFLC. It indicates that if the new leader is traveling at a 12 
higher speed than the original leader, the probability of NGFLC increases. This phenomenon 13 
occurs because the slower original leader restricts the lane changer’s longitudinal movement. As 14 
a result, the lane changer can only conduct a sharp lateral movement and create an overlap with 15 
the new follower. Similarly, the original leader’s movement has been found to be related to the 16 
risk level of the LC maneuver (Chen et al., 2022). Our results here reveal that the original 17 
leader’s behavior also significantly affects the lane changer’s LC behavior and should considered 18 
in the future LC analysis. 19 

Table 4 presents the fitting results of the proposed models. By comparing the AIC values, 20 
we find that the model with considering the original leader has the lower AIC value and is more 21 
suitable to analyze the NGFLC maneuver. Table 5 and Table 6 show the prediction performance, 22 
revealing significant improvements in the model that include the original leader’s information. 23 
Specifically, this enhanced model achieves a 14% higher accuracy and an 8% reduction in false 24 
detections compared to the model without considering the original leader. These comparison 25 
results highlight the importance of the original leader’s role in analyzing the LC maneuvers. 26 
 27 
Table 5 Confusion matrix of two developed models  28 
Confusion matrix Model 1 Model 2 

Actual 
NGFLC  

Actual 
normal LC  

Actual 
NGFLC  

Actual 
normal LC 

Predicted NGFLC  TP = 3418 FP = 989 TP = 3851 FP = 781 
Predicted normal LC FN = 811 TN = 7617 FN = 378 TN = 7805 

 29 
Table 6 Prediction quality of two developed models  30 
Measure  Derivation  Model 1 Model 2 
Recall TP/(TP+FN) 81% 91% 
False alarm rate FP/(FP+TN) 11% 9% 
F1 score 2TP/(2TP+FP+FN) 79% 87% 

 31 
6. Transferability test 32 

In Table 1, we observe a similar percentage of NGFLC samples in both dataset 2 and 33 
dataset 3. This similarity suggests that NGFLCs are a common occurrence across various 34 
locations and cities. Consequently, this section is dedicated to examining the extent to which the 35 
impacts of NGFLCs on traffic flow can be found in these two datasets. Also, we aim to assess the 36 
transferability of the prediction model across different datasets.  37 
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  1 

Figure 13 Percentage of NGFLC in conflict LC samples at dataset 2 and dataset 3 2 
 3 

The analytical methods applied in Section 5.1 and Section 5.2 are replicated for dataset 2 4 
and dataset 3. Figure 13 presents the percentage of NGFLC in conflict LC samples for these two 5 
datasets. It is evident that NGFLC samples constitute over 50% of the total conflict LC samples. 6 
This finding is not affected by different datasets, Groups, and SSMs (TTC or DRAC). Table 7 7 
presents the results of TET, TIT, and CPI for these conflict LC samples. It demonstrated that the 8 
average duration and severity of crash risk during NGFLCs are both higher compared to normal 9 
LCs in dataset 2 and dataset 3.  10 

Table 7 Results of TET, TIT, and CPI for NGFLCs and normal LCs at dataset 2 and dataset 3 11 
SSM Threshold Dataset 2  Dataset 3  

NGFLC (normal LC)  NGFLC (normal LC)  
Group1 Group2 Group3 Group4 Group1 Group2 Group3 Group1 

TET (s) 1s 4.1(1.7) 1.2(0) 2.8(0) 0.8(0) 3.6(1.2) 1.4(0) 3.2(0.5) 0.5(0) 
2s 5.3(3.6) 2.4(0) 3.5(1.2) 1.2(0) 4.1(2.3) 2.6(0.5) 3.7(1.3) 0.9(0) 
3s 6.1(3.8) 3.3(0.9) 4.7(2.5) 1.7(0.5) 5.7(3.1) 3.2(1.2) 4.2(1.9) 1.1(0.2) 
4s 6.9(4.2) 4.2(1.7) 5.6(3.4) 2.3(1.3) 6.3(3.9) 4.1(1.9) 5.4(2.6) 1.9(0.6) 

TIT (s) 1s 1.9(0.6) 0.7(0) 1.4(0) 0.6(0) 1.3(0.4) 0.5(0) 2.1(0.2) 0.2(0) 
2s 3.6(1.8) 1.6(0) 2.6(0.9) 1.3(0) 3.3(1.9) 1.1(0.9) 3.9(1.1) 0.6(0) 
3s 6.2(3.4) 3.8(1.2) 4.1(2.7) 2.2(1.6) 6.5(3.6) 2.9(1.8) 5.3(2.6) 1.5(0.8) 
4 9.5(6.1) 6.4(2.8) 7.7(4.8) 3.8(2.5) 8.5(5.7) 5.6(3.4) 8.1(4.8) 2.8(1.7) 

CPI (%) 2m/s2 37(26) 19(8) 31(24) 12(6) 34(22) 15(6) 27(18) 10(6) 
3m/s2 21(18) 12(6) 23(15) 6(4) 19(14) 11(3) 21(11) 8(2) 
4m/s2 15(9) 5(2) 14(6) 4(1) 11(5) 8(1) 15(7) 5(0.4) 
5m/s2 7(4) 2(1) 8(2) 1(0.5) 5(2) 4(0.4) 4(2) 2(0.2) 

 12 
As expected, Table 8 suggests that the adjustments made to the time headways by the new 13 

follower and the lane changer during NGFLC in dataset 2 and dataset 3 are similar to those 14 
discussed in Section 5.2. These consistent observations across all three trajectory datasets 15 
emphasize the significant impact of NGFLCs on the safety of surrounding vehicles and traffic 16 
flow efficiency, highlighting their importance and the need for careful consideration in future 17 
research. 18 

 19 
 20 
 21 
 22 
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Table 8 Impact of NGFLCs and normal LCs on traffic flow efficiency at dataset 2 and dataset 3 1 

Efficiency 
measurement Vehicles Moments 

Dataset 2 Dataset 3 
NGFLC 

(normal LC) 
NGFLC 

(normal LC) 

Time gap (s) 

New 
follower 

Start moment of LC 1.3(1.5) 1.8(1.7) 
End moment of LC 2.2(1.9) 3.1(1.9) 

Lane 
changer 

Insertion moment of LC 2.2(3.4) 3.6(3.9) 
End moment of LC 2.0(2.1) 3.2(2.6) 

 2 
To assess the transferability of the binary logit model developed with considering the 3 

original leader (model 2), we directly applied this model to the LC samples in dataset 2 and 4 
dataset 3. The prediction performance of model 2 is detailed in Table 9. It can be seen from this 5 
table that the recall, false alarm rate, and F1 score of model 2 in dataset 2 and dataset 3 are 6 
comparable to those observed in dataset 1. This similarity results suggest that model 2 is 7 
effectively transferable across different locations.  8 

 9 
Table 9 Transferability results of model 2 at dataset 2 and dataset 3 10 
Measure  Model with original lane information 
 Dataset 2 Dataset 3 
Recall 87% 89% 
False alarm rate 10% 11% 
F1 score 84% 86% 

 11 
7. Conclusion 12 

This study investigates a critical LC maneuver known as negative forced lane-changing 13 
(NGFLC). Three vehicle trajectory datasets from different locations and cities are used, namely 14 
datasets 1 to 3. Specifically, dataset 1 is used for modeling, and datasets 2 and 3 are used for 15 
transferability testing. A classification procedure is proposed to distinguish between NGFLC and 16 
normal LC samples. The results show that NGFLC samples constitute a significant percentage of 17 
the LC samples, accounting for 33%, 36%, and 28% in each dataset. Based on these data, the 18 
empirical analysis and predictive models offer four major contributions to the understanding of 19 
NGFLC: 20 

(a) Crash risk analysis: Five widely used SSMs are extended to a two-dimensional scope for 21 
NGFLC and normal LC samples. The comparison results yield three key insights. First, NGFLCs 22 
account for approximately 90% of extremely hazardous LC maneuvers, characterized by a TTC 23 
value less than 1s or a DRAC value larger than 5m/s2. These are identified as the primary 24 
contributors to LC crashes. Second, a notable potential crash risk is observed between the new 25 
follower and the new leader during NGFLCs, while this risk is comparatively lower during 26 
normal LCs. Lastly, NGFLCs tend to prolong the duration of danger and increase the severity of 27 
crash risk during LC maneuvers.  28 

(b) Traffic flow efficiency: This study quantifies the impact of LC maneuvers on traffic flow 29 
efficiency by examining the changes in time gaps. Findings highlight that the lane changers are 30 
more likely to increase the initial time gap after performing NGFLC maneuvers. Although we 31 
observe that the new follower attempts to reduce the time gap, which holds for NGFLC and 32 
normal LC, the extent of reduction in normal LCs is significantly greater than in NGFLCs. This 33 
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implies that both the lane changer and the new follower involved in NGFLCs are more likely to 1 
disrupt traffic flow. 2 

(c) Contribution factors: With an awareness of the profound impact of NGFLC on traffic 3 
flow, two binary logit models are developed to identify the critical factors affecting the 4 
probability of an LC decision resulting in an NGFLC. These factors, such as time headway, the 5 
number of rejected gaps, the average value of rejected gaps, the relative speed of the new 6 
follower to the lane changer, and the relative speed of the new follower to the new leader 7 
significantly impact the occurrence of NGFLCs. Moreover, incorporating the information about 8 
the original leader improves the prediction accuracy. Notably, this information has been largely 9 
ignored in previous studies. 10 

(d) Transferability: Our insights and prediction models developed for NGFLC using dataset 11 
1 are validated with dataset 2 and dataset 3. The results confirm that the negative outcomes of 12 
NGFLC can be observed across different locations and cities. Also, the prediction model achieves 13 
satisfactory accuracy when directly applied to these two datasets.  14 

Despite this study providing a comprehensive view of the consequences and causes of 15 
NGFLC, some limitations could merit further research. For example, our analysis focused on 16 
only one type of NGFLC. Indeed, a variety of NGFLC could be observed in the traffic flow, such 17 
as the lane changer overlapping with the new follower while the new follower successfully closed 18 
the gap. In such a situation, the lane changer has to wait for the next gap. Thus, this NGFLC’s 19 
impact may differ from the FLC we introduced in this study. Further efforts are needed to 20 
examine different types of FLC to present a full understanding of the overlapping behavior 21 
during the LC maneuver. Also, we only focused on the safety and efficiency issues on the target 22 
lane. A more comprehensive evaluation could be conducted to explain the consequences of 23 
NGFLC, such as the cooperation LC induced by NGFLC and its impact on the original lane. The 24 
lateral overlap between two vehicles seems closely linked to sideswipe crashes. This study only 25 
identified the NGFLC out of the normal LC. Further research is needed to investigate which 26 
NGFLC is more likely to lead to a sideswipe crash.  27 
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