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Abstract:

A lane-changing (LC) maneuver may cause the follower in the target lane (new follower) to
decelerate and give up space, potentially affecting crash risk and traffic flow efficiency. In
congested flow, a more aggressive LC maneuver occurs where the lane changer is partially next
to the new follower and creates negative gaps, namely negative gap forced LC (NGFLC).
Although NGFLC forms the foundation of sideswipe crashes, little has been done to address its
impacts and the contributing factors. To tackle this issue, a total of 15,810 LC trajectory samples
are extracted from three drone videos at different locations. These samples are categorized into
NGFLC and normal LC groups for comparative analysis. Five commonly used conflict indicators
are extended into two-dimensional to evaluate the crash risk of LC maneuver. The change of time
gaps during LC maneuver are examined to quantify the impact of LC on traffic flow efficiency.
We find that NGFLCs significantly increase crash risk, reflected by the number of hazardous LC
events and potential crash areas compared to normal LC. Additionally, results reveal that both the
lane changer and the new follower tend to maintain a larger time gap after NGFLCs. Factors
including time headway, relative speed, and historical gaps in the target lane significantly affect
NGFLC incidence. Once the movement of the leader in the original lane is taken into account, the
prediction accuracy improves from 81% to 91%. The transferability tests indicate that the
findings about the negative impact of NGFLC and the accuracy of its prediction model are
consistent across different locations. These findings hold implications for driving assistance
systems to better predict and mitigate NGFLCs.

Keywords: Forced lane-changing behavior; lane-changing impact; traffic safety; flow efficiency;
trajectory data analysis
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1. Introduction

A lane-changing (LC) maneuver typically involves interactions between the lane changer
and three surrounding vehicles: the leading vehicle in the original lane (referred to as the original
leader), the following vehicle in the target lane (new follower), and the leading vehicle in the
target lane (new leader). Numerous studies have emphasized the adverse effects of LC maneuvers
on traffic safety and traffic flow efficiency (Yun et al., 2017; Hess et al., 2020; Chen et al., 2021,
Reinolsmann et al., 2021). For example, Pei et al. (2010) report that over 30% of crashes are
linked to improper LC maneuvers. Zheng et al. (201 1a) found that LC maneuvers could lead to
speed reductions in the target lane, subsequently causing stop-go waves and traffic flow
disturbances. Laval and Daganzo (2006) noted that slow-moving LC vehicles with limited
acceleration are a major cause of capacity drops, resulting in decreased traffic flow rates. Given
these negative impacts induced by LC maneuvers, investigating LC maneuvers is of interest in
this study, particularly focusing on those that are risky and inefficient.

Previous research has identified several improper LC types, such as forced LC (Yang et al.,
2016), unsuccessful LC (Ali et al., 2020a), and cut-in LC (Wang et al., 2019). Each LC type has
demonstrated its profound impact on traffic flow. However, these studies typically assume that
the lag gap in the target lane always exceeds a critical positive value during the LC maneuver,
implying sufficient space for the lane changer. Indeed, this assumption of a critical positive gap
does not always hold true in real-world conditions, particularly in congested traffic flow. During
the study of the massive amount of empirical LC maneuvers from expressways in China,
numerous negative gap forced LC (NGFLC) maneuvers were observed. The NGFLC is defined
as a unique type of aggressive LC during which negative lag gaps exist at some moments. Figure
1 visually depicts an NGFLC case. Specifically, from time T to T+3 in this example, the new
follower refuses to yield and attempts to close the gap, creating a negative gap with the lane
changer. Subsequently, the new follower decelerates from T+4 to T+5, enlarging the lag gap to
avoid a sideswipe crash and allowing the lane changer to complete the LC maneuver.

Lag gap < Length of LC: defined as negative Negative Negative

Start moment of lane-changing (T) T+1 T+2

NF: New follower ~ NL: New leader ~ LC: Lane changer

End moment of lane changing (T+5) T+4 T+3
Figure 1 Illustration of forced lane-changing with a negative gap

Although NGFLC forms the basis of sideswipe crashes, the literature has not fully
investigated its identification procedure and influence on crash risk. Given that both the new
follower and the lane changer undergo an aggressive LC maneuver, it is unclear how driver
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behavior changes and affects the traffic flow efficiency. Naturally, if NGFLC negatively impacts
traffic flow compared to normal LCs, understanding the triggers leading to NGFLC becomes
imperative.

Motivated by these research gaps, the primary objective of this study is to comprehensively
examine NGFLC from its identification, consequences, and formulation. More specifically, we
utilize three trajectory datasets from different locations and times to investigate the frequency of
NGFLC. Five widely used SSMs are extended to two-dimensional to examine the impact of
NGFLC on crash risk. Then, a method to quantify how the NGFLC affects the traffic flow
efficiency is proposed. We also compare these findings with those derived from normal LC
samples to gain a deeper understanding of the outcomes of NGFLC. Finally, Binary logit models
are developed to investigate which factors and how they affect an LC decision to become an
NGFLC. The research results are the first attempt to illuminate the impact of NGFLC on
microscopic-level traffic flow, which has been previously overlooked. It can aid in driving
assessment systems to better understand, predict, and avoid NGFLC.

2. Literature review

This section presents a detailed review of previous studies from two perspectives. In the first
subsection, we review studies concerning forced LC, given its close relation to NGFLC. In the
second subsection, we review methods employed to measure the influence of an LC maneuver on
traffic flow.

2.1 Modeling forced Lane-changing maneuver

Hidas (2002) coined the term “forced LC (FLC)” to describe an LC maneuver based on the
principle of driver courtesy. In this context, the lane changer sends a forced request to the new
follower, who subsequently reduces speed and increases the initial gap to accommodate the
request. His seminal work involved developing and implementing an FLC algorithm within the
Simulation of Intelligent TR Ansport System (SITRAS). Simulation results from SITRAS
suggested that the integration of FLC significantly enhances the realism of the flow-speed
relationship. A subsequent study by Sun and Kondyli (2010) corroborated the effectiveness of
FLC by developing a framework for an urban LC system that incorporated FLC, demonstrating
its high accuracy in predicting travel time under congested flow conditions.

Considering the significance of FLC and its prevalence in congested flow, several rule-based
models have been developed to classify and predict FLC. For instance, Sun and Elefteriadou
(2014) proposed an FLC model using a pre-defined rule that guides the new follower to either
reject or accept the lane changer’s request when the gap in the target lane is less than the critical
gap. Qu and Wang (2015) developed an FLC model in which the new follower slows down and
increases the gap based on the location of the lane changer. Yang et al. (2016) categorized FLC
and other LC maneuvers according to the time gap in the target lane. Specifically, an LC
maneuver is deemed as FLC if the time gaps in the target lane remain constant or diminish during
the LC maneuver. Similarly, Chauhan et al. (2022) suggested that the LC maneuver can be
classified as FLC if the spacing headway between the new follower and the new leader expands
during the LC maneuver.

These studies above have made great contributions to modeling FLC, especially when the
initial gap is larger than the critical gap. However, in real-world traffic situations, the critical gap
may fluctuate according to different traffic conditions (Yang et al., 2019). Research is lacking on
such FLC situations where the initial gap or the gap during the LC maneuver is continuously less
than the critical gap (see Figure 1). To address this gap, Zhao et al. (2013) introduced the
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concept of transline ride (TLR), in which the lane changer may encounter multiple new followers
until the LC maneuver is completed. However, they did not propose a method for identifying
NGFLC, and instead, the NGFLC samples in this study were manually extracted by watching
video footage. Hence, developing a procedure for automatically classifying the NGFLC from the
entire traffic flow trajectory is crucial, which will benefit future analysis.

2.2 Lane-changing impact

The impact of LC maneuvers on crash risk has always been an area of interest in the field of
transportation. Numerous models have been proposed to assess the crash risk associated with LC
maneuvers. For example, Yang et al. (2019) investigated the crash risk between the new follower
and the lane changer based on TTC and found that the crash risk is higher before the lane changer
crosses the lane line. Park et al. (2018) proposed a lane change risk index using surrogate safety
measures to evaluate the crash risk of LC maneuvers. Comparison results revealed that the lane
changer tends to be involved in a rear-end collision with the original leader in a work zone
section. Xing et al. (2019) analyzed the LC crash risk on toll roads based on a two-dimensional
TTC and concluded that manual toll collection vehicles notably heighten the crash risk.
Considering various LC types, Chen et al. (2021) divided the LC process into sixteen patterns
based on the vehicle type, discovering a robust correlation between crash risk and factors such as
gap distance, longitudinal speed, and acceleration. Discretionary and mandatory LC have been
investigated separately for their crash risk (Ali et al., 2020, Ali et al., 2019). In addition to
examining the impact of LC on crash risk, various models have been proposed to identify the
factors contributing to risky LC behavior, including statistic models (Adanu et al., 2021, Ali et
al., 2022, Yang et al., 2019, Ouyang et al., 2023), and data-driven models (Chen et al., 2019, Shi
et al., 2019).

On the other hand, LC maneuver in congested flow can disrupt traffic flow capacity due to
slow insertion and abundant acceleration (Duret et al., 2011; Marczak et al., 2015, Leclercq et al.,
2016, Chen et al., 2023). Empirical studies have indicated that LC maneuvers might induce speed
reductions of the new follower, leading to oscillation. 12 out of 18 oscillations in the NGSIM
dataset are caused by LC maneuvers (Zheng et al. (2011b)). Chen et al. (2022) observed that
some new followers might reduce their speed when they notice a lane changer who starts to shift
its lateral position in the adjacent lane.

The abovementioned studies could serve as valuable references for evaluating the impact of
LC maneuvers. Lee et al. (2006) suggested that lateral overlap between the lane changer and the
new follower occurs due to inappropriate decision-making by the lane changer. For simplicity,
they treated this as the difference in flow ratio between the target and original lanes. They
incorporated it into the Average Flow Ratio index proposed by Chang and Kao (1991) to estimate
the crash risk. Simulation results reported by Ben-Akiva et al. (2006) implied that FLC
significantly influences the macroscopic outcomes of traffic flow. Zhao et al. (2013b) found that
the basic LC characteristics, such as LC time, LC velocity, and the number of affected vehicles,
significantly differ between FLC and other LC maneuvers. However, a detailed understanding of
the microscopic consequences and causes of NGFLC remains unclear.

3. Data and negative gap forced lane-changing detection
3.1 Data collection
The research team conducted drone video recordings at three merging segments in China.
The first site, Yintian Road in Nanjing, was recorded over a week from December 12 to
December 19, 2023. The recording period for each day was chosen during the morning peak
5



0NN N bW

Ptk
DA WD = O O

16
17
18
19
20
21
22
23
24
25
26
27
28
29

hours from 7:30 am to 9:30 am to capture a higher frequency of LC maneuvers. The data from
this site serves as the modeling dataset, namely dataset 1. The other two sites aim to assess
whether the presence, impact, and occurrence mechanism of NGFLC, as obtained in the
modeling dataset, can be observed at different locations and cities. Specifically, the second site
was also located in Nanjing but on a different expressway known as Xianlin Road. For this site,
the drone recordings were conducted on July 28, 2021, from 7:30 am to 9:00 am. The third
merging segment was located in another city, Chongqing. The data collection for this site was
conducted during peak hours on December 15, 2023, from 7:30 am to 10:30 am. All recordings
were made under sunny weather conditions. Drones were flown at an altitude of 300m, capturing
400m road segments. Figure 2 illustrates the locations of these three study sites. The following
paragraphs provide a brief overview of the trajectory data extraction procedure. For detailed
methodology, readers are referred to our previous studies (Chen et al., 2021, Wan et al., 2020).
The trajectory extraction method includes five steps: video stabilization, vehicle detecting,
vehicle tracking, lane detecting, and raw data smoothing.

2@ 2 Dataset 1: Collected from December 12 to December 19, 2023

Yintian road, Nanjiag, China
Zgiisiniay

m
& =
m
- ea AW
- G co\\e(mor;at repmssned

Dafad

Haixia road, Chongqing, China

area

Figure 2 Three study sites

Firstly, the stabilization of raw drone video is required due to potential drone camera
shaking caused by control maneuvers or wind during high-altitude recording. Each video’s initial
frame is used as a baseline frame. Then, the Temporally Robust Global Motion Compensation
model is adopted (Li et al. 2019) to calculate transformation matrixes, aligning subsequent frames
to the baseline frame. This process yields adjusted frames, ensuring vehicle movements in the
video remain unaffected by the instability of the camera. Figure 3 illustrates an example of this
process, where the left image is the baseline frame, the center shows a mid-recording frame, and
the right image is the adjusted frame. In Figure 3(b), a noticeable rotation of the road compared
to the baseline frame is observed. The stabilization process aligns the road position in the
adjusted frame with the baseline frame, as shown in Figure 3(c).
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(a) Baseline frame (b) A frame during recording (c) Adjusted frame

Figure 3 An example of the stabilization process

Next, the You Only Look Once v4 (YOLOV4) algorithm is employed for vehicle detection
in each frame. The YOLOv4 model is trained on 500 drone pictures from the first recording site,
with vehicles manually marked within rectangular boundaries. Using the well-trained model, the
four corner points of the rectangle bounding box for each vehicle can be obtained. To quantify its
detection accuracy, one vehicle will be marked with two bounding boxes, one for manually
marking and one for automatically detecting. The detection error of the trained YOLOv4 model is
measured by the Mean Squared Error (MSE) of the differences in the center points between
detected and ground truth bounding boxes. For the first recording site, 20 drone images are
randomly selected from drone videos. In these images, a total of 1,059 vehicles are manually
marked and automatically detected by YOLOv4 with bounding boxes, respectively. Of these, the
MSE for the trained YOLOvV4 is 0.04m. For the other two sites, the MSE values were 0.06m and
0.09m across 924 and 1,142 vehicles in randomly selected images, respectively. These test results
demonstrate that our detecting model is good enough to detect vehicle positions accurately.

Subsequently, the movement of each vehicle is tracked frame by frame. Considering the
drone’s camera records at 30 fps, the time step for tracking the vehicle trajectory is set at 1/30
second. Traffic lanes are identified using the method proposed by Liu et al. (2020). Thus, each
vehicle can be assigned to its corresponding lane, which facilitates the identification of the LC
event.

The raw trajectories derived from the previous steps contain considerable white noise. Minor
positional deviations over short time intervals can cause fluctuations in speed and acceleration
profiles. To eliminate noise in these raw trajectories, we employ the Wavelet Transform method
recommended by Chen et al. (2021). This approach ensures that the location, speed, and
acceleration of each vehicle at every time interval remain within realistic limits. To check the
accuracy of the smoothed trajectories, we randomly selected two hours of trajectory data, and
compared the range of acceleration before and after smoothing with the recommended range (-
6m/s? to Sm/s?) (Montanino and Punzo, 2013, Thiemann et al., 2008). It is found that 98.25% of
time intervals of acceleration are out of the recommended range before smooth. After smoothing,
only 0.067% of time intervals are outside the recommended range, indicating that noises in the
raw data have been well addressed, resulting in a smoothed trajectory conducive to high-
precision analysis. Figure 4 shows an example of obtained vehicle trajectories.

In total, we obtain 67,519 vehicles’ trajectories from 14 hours of recordings at study site 1.
Additionally, 7,071 vehicles’ trajectories from 1.5 hours of recordings at study site 2 and 13,154
vehicles’ trajectories from 3 hours of recordings at study site 3 are obtained. Each vehicle
trajectory data includes the lateral location (m), longitudinal location (m), speed (m/s),
acceleration (m/s?), lane number, space headway (m), and time (s). The speed and acceleration
for each vehicle are calculated based on the location information at each time interval.
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Figure 4 (a) An example of vehicles’ trajectories in a single lane; (b) speed and (c) acceleration of
a vehicle before and after smoothing

3.2 Identification of negative gap forced lane-changing

This section presents a procedure for identifying NGFLG. The identification process
consists of two steps: (1) extracting LC samples from the trajectory dataset and (2) establishing a
criterion to determine the occurrence of negative gaps in the extracted LC samples.

3.2.1 Lane-changing identification

This subsection details the extraction procedure for LC samples. Given that an LC process is
a time series trajectory, we set three critical time points to locate it, which are the start, insertion,
and end moments. These time points are relevant and will be defined below. Figure 5 (a)
provides an example of these points. After describing these points, we will show how to extract
them numerically.

*  The start moment of the LC maneuver is marked by “A” in Figure 5 (a). Consistent with
previous studies (Ali et al., 2018; Yang et al., 2019), we characterized the LC start moment
as the instance when the lane changer suddenly changes its lateral movement in the original
lane.

* The insertion of the target lane is marked by “B” in Figure 5 (a). This is defined as the
instance when the center of the LC vehicle reaches the edge of the target lane.

* The end moment of the LC maneuver is marked by “C” in Figure 5 (a). After the lane
changer is successfully inserted into the target lane, it will adjust the speed and lateral
position to the center of the target lane. Finally, the LC maneuver ends when the lane
changer’s movement attains stability in the target lane. Therefore, we determine this
stabilization point as the end moment of the LC maneuver.

The Wavelet Transform with a Mexican hat function is employed to identify the start and
end moments of the LC maneuver automatically (time points A and C). This method has
demonstrated excellent efficiency in capturing spatial information in time series data (Zheng et
al., 2011; Chen et al., 2014, Ali et al., 2020). Specifically, the lateral moment of the lane changer
is transformed into a wavelet-based curve, as shown in Figure 5 (b). The curve’s maximum and
minimum points correspond to the first and second sudden shifts in the lateral moment,
representing the start and end moments of the LC maneuver, respectively. Since our trajectory
extraction provides the location of each lane edge, the time point B for each LC sample can be
easily obtained by calculating the lane changer’s distance to the lane edge equation. Once the



distance reaches zero, time point B is identified. Following this procedure, we obtained 20,748
LC events in dataset 1, 2,232 LC events in dataset 2, and 1,967 LC events in dataset 3.

Wavelet-base Energy (unitless)
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Figure 5 Determination of three critical time points during the LC maneuver: (a) lane changer’s
lateral trajectory; (b) transferred curve based on Wavelet-Transform

3.2.2 Identification of negative gap forced lane-changing

With a focus on the LC’s impact, a complete LC sample should include the lane changer and
the surrounding vehicles. Therefore, for each LC event extracted previously, we correspondingly
retrieve vehicles’ trajectories in the target and original lanes. Hence, each complete LC sample
incorporated four vehicles: the lane changer, the new follower, the new leader, and the original
leader. For all the candidate LC samples, we implement the following two rules to filter out
unsuitable samples:

* Rule 1: The new follower and the new leader must be the same vehicles from time points A
to C.
* Rule 2: The original leader must be in the same vehicle from time points A to B.

Regarding an LC sample, rule 1 ensures that interactions between the lane changer and the
vehicles in the target lane are not affected by other LC maneuvers. As a result, 3,841 LC samples
from dataset 1, 567 LC samples from dataset 2, and 349 LC samples from dataset 3 are removed
after applying this rule.

Rule 2 is a relaxed version of Rule 1 that allows us to gain insights into how the original
leader affects the lane changer’s behavior. By applying these rules, we end up with 12,815 LC
samples in dataset 1, 1,617 LC samples in dataset 2, and 1,378 LC samples in dataset 3.

Next, we develop an indicator called 4Lon to identify whether the LC vehicle has a negative
gap with the new follower:

ALon(t)= X, (1)~ X, (1) (1)

where Xzc(?) is the rear point of the LC vehicle at time ¢, and Xn#(¢) is the front point of the new
follower at time ¢.
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Figure 6 Two examples: (a) an example of NGFLC; and (b) an example of normal LC

Figure 6 (a) and (b) illustrate two examples of ALon (¢) with negative and positive values,
respectively. A negative value of ALon (f) indicates that the lane changer’s rear bumper is behind
the new follower’s front bumper at time ¢, implying that the two vehicles are laterally overlapped.
If any negative value of 4Lon exists throughout the entire LC maneuver, we classify this LC
maneuver as NGFLC. On the contrary, if 4Lon remains positive throughout the entire LC
maneuver, it is classified as a normal LC.

Table 1 presents the classification results of each trajectory dataset. We find that 33%, 36%,
and 28% of LC samples are identified as NGFLC in dataset 1, dataset 2, and dataset 3,
respectively. These similar and considerable proportions of NGFLCs highlight that NGFLCs are
prevalent in the traffic flow. In the following section, we will delve into the consequences of
NGFLC and explore how it differs from normal LC.

Table 1 Identification results of NGFLC at three datasets
Dataset 1 Dataset 2 Dataset 3

Total LC samples 12815 1617 1378

Normal LC samples 8586 1026 992

NGFLC samples 4229 591 386

Percentage of NGFLC 33% 36% 28%
4. Methodologies

To achieve a comprehensive understanding of the NGFLC behavior and its differences from
normal LC behavior, safety and efficiency metrics are initially introduced in this section.
Specifically, five surrogate safety measures (SSMs) are introduced in Section 4.1, and a method
to quantify the impact of LC on traffic flow efficiency is proposed in Section 4.2. To unveil
which factors and how they characterize an LC decision as an NGFLC maneuver, binary logit
models are established in Section 4.3.

4.1 Safety measurements
4.1.1 Time-based SSMs

In previous studies, the conventional TTC has been widely utilized to assess the potential
crash risk between two consecutive vehicles (Biswas et al., 2021; Ding et al., 2019; Gu et al.,
2019). However, this approach assumes that the two vehicles are moving in the same lane, which
may not always apply in some scenarios where collisions occur at different angles. To address

10
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this limitation, researchers have extended safety measures into two dimensions, yielding
satisfactory results (Venthuruthiyil and Chunchu, 2022; Ward et al., 2015; Xing et al., 2019).
Given that our study focuses on the LC scenario, where conflict with angles could arise, we
extend the conventional TTC into two-dimensional to evaluate crash risk during the LC
maneuver.

In the two-dimensional TTC, two successive vehicles are represented as rectangular
bounding boxes. Similar to the conventional TTC, these bounding boxes move in accordance
with their current speed and direction. The two-dimensional TTC measures the time it would take
until the first intersection moment of these two bounding boxes, quantifying the current risk
level. Clearly, a smaller TTC value suggests a more dangerous situation. On the other hand, if
two bounding boxes do not intersect, the TTC value is considered to be infinite. A threshold of
TTC, abbreviated as TTC#*, is used to differentiate between safe and conflict situations. Herein,
we use four TTC” values ranging from 1s to 4s with 1s intervals. An LC sample is categorized as
a conflict if the TTC value is less than the TTC" at any moment during the LC maneuver.

Considering that LC maneuvers typically last from 3s to 15s (Moridpour et al., 2010b), we
adopt two variants of two-dimensional TTC called Time Exposed TTC (TET) and Time
Integrated TTC (TIT) to evaluate the crash risk for a complete LC sample. Specifically, the TET
value is determined by the total dangerous duration wherein the TTC value falls below the TTC"
during the LC maneuver (Minderhoud and Bovy, 2001), which can be calculated as follows:

TET =35, (1) 7 @)

t=0

where N is the number of time intervals, each time interval is 7 (0.03s in our study), during the i-
th LC maneuver. di(¢) is a switching variable between 0 and 1. Specifically, if TTCi(¢) less than
TTC", d4¢) equals 1, otherwise, di(f) equals 0.

TIT measures the integral of the TTC profile below the threshold during the LC maneuver,
allowing to express the crash risk severity, which can be calculated as follows:

N
TIT, =Y [ TTC" -TTC,(t) |-z, YO<TTC,(t)<TTC’ 3)

t=0

4.1.2 Deceleration-based SSMs

This study uses two deceleration-based SSMs to evaluate the kinematic characteristics for
crash risk avoidance during the LC maneuver (Cunto and Saccomanno, 2008). The first conflict
indicator, Deceleration Rate to Avoid a Crash (DRAC), measures the required deceleration rate
of the following vehicle to match the speed of the leading vehicle to avoid a crash. Traditionally,
this indicator quantifies the crash risk between two vehicles moving in the same direction, which
can be calculated as follows:

(V/_Vl)z .
DRAC = D SV >V (4)

0, otherwise
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where Vyand Vi are the speed of the following and leading vehicles, respectively, D is the
distance between the front bumper of the following vehicle and the rear bumper of the leading
vehicle.

In the LC scenario, the formula of DRAC needs to be redefined. Specifically, when the
rectangular bounding boxes of two vehicles do not intersect along their current direction and
speed, meaning that their two-dimensional TTC value is infinite, the DRAC equals zero. On the
other hand, if there is a potential intersection position, the distance from the following bounding
box to that intersection point will be considered as the remaining distance, denoted as D24. Under
this context, the DRAC is defined as the required deceleration rate for the following vehicle to
completely stop before reaching the potential intersection position, which can be rewritten as
follows:

[ 0] ,if TTC,(1)e R

DRAC,(t)=1 D,, (1) )
0, otherwise
D, (t)=TTC,(t)-V,(¢) (6)

When the value of DRAC exceeds the maximum available deceleration rate (MADR), the
following vehicle is considered to be in a traffic conflict. Similar to previous studies, four MADR
values ranging from 2m/s® to 5m/s* with 1m/s? interval are used in this study. An LC sample is
categorized as a conflict LC sample if the DRAC value is larger than the MADR value at any
moment during the LC maneuver.

An improved indicator is adopted to evaluate the probability of conflict moments identified
by DRAC during the LC maneuver, namely the Crash Potential Index (CPI). The formula of CPI
is given as follows:

;Q(f)-f 7)

CPI =
Nt

where 6i(¢) is a switching variable between 0 and 1, specifically, if DRACi(z) is large than

MADR, 6i(t) equals 1, otherwise, 6i(¢) equals 0.

4.2 Efficiency measurements

In previous studies, the term “void” refers to the extra time gap that arises during the LC
maneuver. It has been used to assess the impact of LC on traffic flow capacity (Chen and Ahn,
2018; Laval and Daganzo, 2006; Leclercq et al., 2016). In practice, the void may be closed or
even reduced for several reasons, such as aggressive behavior or congested flow (Chen et al.,
2020). Building on the definition of the void, we measure the change in time gap during the LC
maneuver to capture the impact of LC on traffic flow efficiency for both the lane changer and the
new follower.

We define the void created by the lane changer as 40Lc, which can be calculated as below:

AOrc = OnL-Lc— INL-LC (8)
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where Onz-Lcis the final time gap between the new leader and the lane changer at the end
moment of LC, and Inz-zc is the initial time gap between the new leader and the lane changer at
the insertion moment.

Figure 7 provides two examples for Equation (8). Figure 7 (a) shows a scenario where the
lane changer increases the time gap after the LC maneuver, resulting in a positive value of 40Lc.
This positive value reduces the traffic flow capacity. Figure 7 (b) shows an opposite situation
where the lane changer decreases the time gap, resulting in a negative value of 4O0.c. This
negative value enhances the traffic flow capacity.

New leader

New leader

Location

AN Q
o] oz
<
o
Location

OA‘L-L(Z ;}/\

Void (positive) " Void (negative)

Lane changer

" Lane changer

Insertaion moment End moment of LC Insertaion moment End moment of LC
(a) (b)
Figure 7 Two examples for the quantification of the changing process of the void created by the
lane changer (a) example 1; (b) example 2

The second metric, denoted as 4Onr, quantifies the void caused by the new follower, which
can be calculated as below:

AONF = Orc-NF— INL-NF )

where Orc-nris the final time gap between the lane changer and the new follower at the end
moment of LC, and /nz-nr is the initial time gap between the new leader and the new follower at
the start moment of LC.

Figure 8 provides two examples for Equation (9). It follows that a larger value of 4Onr
indicates that the new follower is more likely to create an extra time gap compared to its initial
driving behavior, which can negatively affect the traffic flow efficiency.

New leader , Lane changer

.

New follower Lane changer

Location
Location

Void (negative)

Void (positive)

New follower

New follower

Start moment of LC End moment of LC Insertaion moment End moment of LC
(a) (b)
Figure 8 Two examples for the quantification of the changing process of the void created by the
new follower (a) example 1; (b) example 2
13
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4.3 Binary logit model

Considering the fact that the outcome of an LC decision in our case is either an NGFLC or a
normal LC, we use a binary variable Y to capture this outcome. Y equals 1 if the LC decision
leads to NGFLC and 0 otherwise. Let X represent the vector of independent variables, which
corresponds to the current traffic conditions when the lane changer makes its LC decision. A logit
function is used to generate a predicted value of Y under the impact of X. Thus, we have the
following expressions for the binary logit model.

ln%:a+ﬂ)(+g (10)
_exp(a+pX +e)
p(1|X)_l+exp(a+ﬂX+g) D

where a is the intercept, X is the vector of independent variables consisting of x1, x2 ,..., x» (e.g.,
relative speed, time headway, etc.), f is the vector of estimated coefficients, ¢ is the error term,
and p(1|X) is the predicted probability that the LC decision under a given X will lead to NGFLC.

We evaluate the proposed models from their fitting performance and prediction
performance. Specifically, the Akaike information criterion (AIC), as suggested by Araike
(1998), is used to compare the fitting performance of different models, which can be computed as
follows:

AIC =2n-2L(0) (12)

where 7 is the number of independent variables, L(0) is the log-likelihood at convergence. The
model with a lower AIC is considered the better model.

To compare the predicted values of the models with their ground truth, we use a confusion
matrix, which includes four basic elements: true positive (TP), false positive (FP), false negative
(FN), and true negative (TN). Based on these four elements, three indicators, Recall, False Alarm
Rate (FAR), and F-score, are calculated to describe and compare the models’ prediction
performance.

TP

Recall = (13)
FAR= FPTjLV N (14
F—Score=2TP+2F% (15)
5. Results

In this section, we first present the consequences of NGFLC on both crash risk and traffic
flow efficiency and also compare these outcomes with those of normal LC, which could facilitate
an in-depth analysis of NGFLC (Section 5.1). Then, the contributing factors and how they
characterize an LC decision as an NGFLC maneuver are discussed in Section 5.2. The analysis in
this section is only based on dataset 1.
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5.1 Crash risk analysis

This study categorizes the potential crash risks present in both original and target lanes
during the LC maneuver into four distinct groups. These groups are:

® Group 1: the new follower and the lane changer;

® Group 2: the new follower and the new leader;

® Group 3: the lane changer and the new leader;

® Group 4: the lane changer and the original leader.

For each Group, TTC and DRAC are first applied to all LC samples to identify conflict LC
samples, respectively. The results are given in Table 2. From these conflict LC samples
identified through TTC and DRAC, the percentages of NGFLC and normal LC samples are
shown in Figure 9 and Figure 10, respectively. Detailed discussions of these findings are

provided below.
96%|94'/a|90'/.|89% 79%|67%|61%|52% 74%|67%|55% 52%
1 2 1 2 1 2

[ NGFLC B Normal LC
100
80 |-
60 -

88% Q70%Q58%51%
1 2

40 -

Percentage (%)

20 +

3 4 3 4 3 4 3 4
TTC threshold (s) TTC threshold (s) TTC threshold (s) TTC threshold (s)
(a) Group 1 (b) Group 2 (c) Group 3 (d) Group 4

Figure 9 Percentages of NGFLC and normal LC in conflict LC samples identified by TTC: (a)
Group 1; (b) Group 2; (c¢) Group 3; (d) Group 4

For Group 1, Table 2 suggests that 10.53% of LC samples result in conflict situations when
the TTC* is set at 1s. Among these conflict LC samples, 88% are identified as NGFLCs, as
shown in Figure 9(a). Given that a TTC value below 1s is indeed dangerous since it may not
provide enough time to avoid a crash, this result highlights that NGFLC is responsible for a
predominant part of the highly risky Group 1 during LC maneuvers.

Table 2 Percentage of conflict LC samples identified by TTC and DRAC

i 0
SSMs Threshold Percentage of conflict LC samples to total LC samples (%)

Group 1 Group 2 Group 3 Group 4

Is 10.53 0.41 6.01 0.82

2s 16.69 2.57 10.61 4.87
e 5 26.14 5.85 17.01 8.91

4s 35.11 10.69 23.09 15.12

2ms? 19.24 6.07 12.8 9.20

3m/s? 11.35 3.46 8.29 5.06
DRAC s 6.21 1.37 4.19 273

Sm/s? 2.98 0.02 1.92 0.88

Regarding Group 2, Table 2 reveals that only 10.69% of LC samples are dangerous when
we set the TTC* at 4s. This proportion further reduces to 0.41% when TTC* is reduced to 1s.
Figure 9(b) suggests that the proportion of normal LC samples to these conflict LC samples is
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relatively small, ranging from 3.84% to 11.38%. This finding is reasonable because the new
follower must maintain a large gap from its leader to accommodate the lane changer during
normal LC maneuvers. However, when the lane changer conducts an NGFLC maneuver, the new
follower suffers a higher crash risk with its leader, which can be inferred by the significant
difference between the orange and blue bars in Figure 9(b). This finding provides crucial
microscopic insight into a novel rear-end crash formation mechanism, diverging from previous
studies that primarily concentrated on two crash targets in the target lane: (1) potential crash risk
between the new follower and the lane changer; (2) potential crash risk between the lane changer
and the new leader (Gu et al., 2019; Yang and Ozbay, 2011). Our study indicates that a lane
changer in the adjacent lane could trigger a rear-end collision in the target lane. A possible
explanation for this result is that the new follower pays much attention to the lane changer since
they are laterally adjacent. Consequently, the movement of the new leader has been largely
ignored by the new follower, leading to an increase in the crash risk.

Figure 9(c) presents the crash risk of Group 3. As we can see from this figure, the orange
bar is consistently higher than the blue bar for all TTC* values. This pattern indicates that
NGFLCs are more likely to create risky situations between the lane changer and the new leader.
Similarly, Figure 9 (d) shows comparable trends in Group 4, suggesting that during NGFLCs,
the interactions between the LC and the original leader are more dangerous before insertion than

in normal LCs.
85'/.|87%|90'/.|94%
2 3 4 5

[ NGFLC B Normal LC
100

80 |-
60

40 -

Percentage (%)

20 +

57%Q63%Q70%f89% 55%Q70%Q84%91% 58% M72%§83%90%

2 3 4 5 2 3 4 5 2 3 4 5
MADR (m/s?) MADR (m/s?) MADR (nv/s?) MADR (m/s?)
(a) Group 1 (b) Group 2 (c) Group 3 (d) Group 4

Figure 10 Proportion of NGFLC and normal LC in conflict LC samples identified by DRAC: (a)
Group 1; (b) Group 2; (c) Group 3; (d) Group 4

Figure 10 reveals that the percentage of NGFLC samples in each Group notably exceeds
that of normal LC samples. This observation is consistent with the LC crash risk assessment
using TTC. Moreover, it implies that vehicles involved in NGFLC require a more significant
deceleration effort to avoid crashes effectively.

To evaluate the severity and frequency of crash risk during a complete LC maneuver, we
calculate the TIT, TET, and CPI for all conflict LC samples. The results are given in Figure 11.
Generally, the average TET values for NGFLC under various thresholds are notably higher than
those for normal LC across all Groups. This result indicates that NGFLCs tend to induce longer
hazardous situations for surrounding vehicles compared to normal LCs. Similarly, in each Group,
the average TIT and CPI values for NGFLC are both larger than those for normal LC, indicating
a higher potential for crash severity during NGFLC maneuver.
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Figure 11 TET, TIT, and CPI for different Groups

5.2 Traffic flow efficiency analysis

This section evaluates the impact of NGFLC and normal LC on traffic flow efficiency using
the measures outlined in Section 4.2. Figure 12 (a) shows the void created by the lane changer
upon entering the target lane. The red and green boxplots in this figure represent NGFLC and
normal LC, respectively. For NGFLCs, the average time gap for the lane changer is 1.4s at the
insertion moment. Then, it rises to 2.6s at the end moment. In contrast, normal LCs significantly
increase the average time gap from 1.4s to 1.8s. A paired t-test is applied to check whether the
time gap increases significantly between NGFLC and normal LC samples. The test result
confirms that the lane changer is significantly more likely to create voids after NGFLC (Average
AOrc = 1.2s) than after normal LC (Average 40.c = 0.2s), thus exerting a more substantial effect
on traffic flow efficiency.

I NGFLC B Normal LC

7
4 - T 6r _ T o
— i | T 5+ i i i —
g3 : ! - = 2 4l ! ' | |
g | ' g ; :
8,0 ol . N,
[} ! [
E ! E 2L
SED S , | - | = | | |
i -+ L 1 ! | | ‘
- o S o !
0 0oL -
1 1 | | | | | 1
Insertion of LC End of LC Start of LC End of LC

() (®)
Figure 12 Changing pattern of time gap under NGFLC and normal LC on dataset 1 for (a) the
lane changer and (b) the new follower

Figure 12 (b) illustrates changes in the new follower’s time gap during LC maneuvers. It
can be observed that the average time gap of the new follower at the start moment of NGFLCs
(2.4s) is smaller than that of normal LCs (2.9s). Furthermore, the new follower tends to maintain
a larger time gap after NGFLC (2.3s) compared to that after normal LC (1.9s). A paired t-test
reveals that the average change value in the new follower’s time gap (4Onr) after NGFLC (-0.1s)
is significantly lower than after normal LC (-1.0s). This finding suggests that the willingness of
the new follower to catch up with the lane changer is more likely to be restricted after
experiencing NGFLC.
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Indeed, several previous studies have also stated that the lane changer, as well as its new
follower, both have a larger probability of creating voids in the target lane during the LC
maneuver, resulting in the reduction of traffic flow capacity (Chen and Ahn, 2018; Marczak and
Buisson, 2014; Oh and Yeo, 2015). Our above findings are similar to these empirical findings.
The findings suggest that even when the assumption of the bounded acceleration and the free
speed do not meet in the real traffic flow, the voids can still be induced during the LC maneuver.
Most importantly, the current results here provide new insights into the literature by
demonstrating that NGFLC, compared to normal LC, maybe the primary reason for the void
creation. It is recommended that future efforts should be devoted to investigating its relation to
some critical traffic phenomena, such as oscillation and capacity drop.

5.3 Performance of binary logit models

In the literature, the focus for analyzing LC maneuvers has typically been on the vehicles’
information in the target lane, while information pertaining to the original lane is often
overlooked. For the purpose of comparison, we develop two binary logit models. Table 3
presents the definitions and description statistics of the candidate independent variables used in
these two models. The rejected gap in this table is calculated by counting the number of gaps
presented to the lane changer before it initiates the LC maneuver. Specifically, the first model
considers only information from the target lane (model 1), while the second enhanced model
includes the leader’s information in the original lane (model 2). The Pearson correlation test is
adopted for each pair of candidate variables to avoid multicollinearity. The results show that all
correlation values are less than 0.4, indicating non-significant collinearity is found among the
candidate variables.

Table 3 Definition and description of selected independent variables

Variables Description Mean S.D. Min. Max.

Variables for the target lane

INL-NF Time headway between the new leader and new 2.1 29 011 10.2
follower on the target lane (s)

Rg The number of rejected gaps 3.7 28 0 11

Maaps The average value of rejected gaps (m) 7.2 57 2.8 22.3

V NL-NF The speed difference between the new leader and the 0.6 29 -11.3 11.6
new follower on the target lane (m/s)

VLCNF The speed difference between the lane changer and 0.3 41 -93 104
the new follower on the target lane (m/s)

Variables for the original lane

Tio-Lc The time headway between the leader in the original 1.3 1.5 0.1 8.5
lane and the lane changer (s)

V0oL The speed difference between the leader in the -0.3 25 -89 113
original lane and the leader in the target lane (m/s)
ALro-Lc The acceleration difference between the leader in the -04 1.2 -43 2.1

original and the lane changer (m/s?)

Table 4 presents the results related to the developed binary logit models. The parameter
time headway in the target lane (7NL-NF) is negatively associated with the probability of NGFLC.
It indicates that NGFLC is more likely to occur when the lane changer decides to change lanes
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with a small time headway in the target lane. This result is consistent with the earlier findings in
Figure 10 (b), which demonstrate that the average 7nL-nr for NGFLCs is smaller than that for
normal LCs. In most of the previous studies, a small gap in the target lane leads to two
consequences: either the lane changer rejects this gap (Marczak et al., 2013), or the lane changer
accepts it but aborts the LC maneuver when it deems the conditions in the target lane are
unsuitable to complete the following LC maneuver (Ali et al., 2020). Our finding offers new
insight into the outcome of accepting a small gap. Specifically, the lane changer will accept it and
attempt to yield the new follower to a slow speed to provide a larger gap by laterally overlapping
with the new follower.

Table 4 Estimation results mode 1 and model 2

Variables Model 1 Model 2

Mean SE. P-value = Mean SE. P-value
Constant 34 0.2 <0.001 3.8 0.2 <0.001
TNL-NF -0.8 0.1 <0.001 -1.5 0.1 <0.001
Rg 0.6 0.3 <0.001 0.9 0.2 <0.001
Mgaps -0.3 0.02 <0.001 -0.5 0.04 0.002
V NLNF 1.7 0.4 <0.001 2.1 0.3 <0.001
V LcNF 0.9 0.1 0.002 0.6 0.1 <0.001
Tro-Lc - - - -0.7 0.1 <0.001
VicLo - - - 1.6 0.2 <0.001
Arc-Lo - - - 32 0.5 <0.001
I'NL-LC - - - -1.5 0.1 <0.001
Model fit statistics
Number of 12815 12815
observations
AIC 4517 3142

The positive coefficient of the number of rejected gaps (Rg) indicates that the probability of
NGFLC increases with an increase in Rg. Moreover, the negative coefficient of the average value
of rejected gaps (Mgaps) suggests that the lower Mgqps lead to a higher probability of NGFLC.
These findings imply that when a lane changer, after repeatedly rejecting small gaps in the target
lane, tends to become more impatient and is more likely to conduct an NGFLC. Previously, some
studies have focused on why lane changers reject or accept a presented gap in the target lane. The
results of this study emphasize that the lane changer’s rejection behavior may affect its following
LC maneuver. Hence, the gap acceptance theory should further incorporate the lane changer’s
historical rejection behavior to improve the accuracy of predictions.

Now, we examine the relative speed of the new follower to the new leader (¥nLnF) and to
the lane changer (Vic-Nr). Large values of these variables indicate that the new follower is
quickly approaching both the new leader and the lane changer. In this context, Yang et al. (2019)
found that a large gap in the target lane is required for the lane changer to decide on an LC
decision. In our study, we are interested in how the two variables affect the LC maneuver if the
lane changer insists on changing lanes. A positive relationship between the variables of Vev-Lv
and Vrv-Lc and the probability of NGFLC is observed. It indicates that an LC decision is more
likely to result in an NGFLC when the values of Vev-Lv or Vev.Lc are higher. This finding is
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consistent with our earlier results in Section 4.2.1, which indicated that NGFLC is more
hazardous than normal LC since a larger value of speed difference poses a significant crash risk.

Regarding the relation between the lane changer and the original leader, we find that the
coefficient of their time headway (7Lo-Lc) is negative. This implies that a smaller time headway
to the original leader increases the likelihood of NGFLC. Furthermore, the positive coefficients
of their relative speed (VLc-Lo) and relative acceleration (ALc-Lo) indicate that the faster the lane
changer, the larger probability the LC decision will result in NGFLC. It is reasonable that when
the lane changer is quickly approaching the original leader, it is more likely to execute an urgent
LC maneuver to avoid collision with the original leader. This LC intention increases the
frequency of NGFLC.

The relative speed between the new leader and the original leader (V'nL-Lo) is positively
associated with the probability of NGFLC. It indicates that if the new leader is traveling at a
higher speed than the original leader, the probability of NGFLC increases. This phenomenon
occurs because the slower original leader restricts the lane changer’s longitudinal movement. As
a result, the lane changer can only conduct a sharp lateral movement and create an overlap with
the new follower. Similarly, the original leader’s movement has been found to be related to the
risk level of the LC maneuver (Chen et al., 2022). Our results here reveal that the original
leader’s behavior also significantly affects the lane changer’s LC behavior and should considered
in the future LC analysis.

Table 4 presents the fitting results of the proposed models. By comparing the AIC values,
we find that the model with considering the original leader has the lower AIC value and is more
suitable to analyze the NGFLC maneuver. Table 5 and Table 6 show the prediction performance,
revealing significant improvements in the model that include the original leader’s information.
Specifically, this enhanced model achieves a 14% higher accuracy and an 8% reduction in false
detections compared to the model without considering the original leader. These comparison
results highlight the importance of the original leader’s role in analyzing the LC maneuvers.

Table 5 Confusion matrix of two developed models

Confusion matrix Model 1 Model 2
Actual Actual Actual Actual
NGFLC normal LC NGFLC normal LC
Predicted NGFLC TP = 3418 FP =989 TP = 3851 FP =781
Predicted normal LC FN =811 TN =7617 FN =378 TN = 7805

Table 6 Prediction quality of two developed models

Measure Derivation Model 1 Model 2
Recall TP/(TP+FN) 81% 91%
False alarm rate FP/(FP+TN) 11% 9%

F1 score 2TP/(2TP+FP+FN)  79% 87%

6. Transferability test

In Table 1, we observe a similar percentage of NGFLC samples in both dataset 2 and
dataset 3. This similarity suggests that NGFLCs are a common occurrence across various
locations and cities. Consequently, this section is dedicated to examining the extent to which the
impacts of NGFLCs on traffic flow can be found in these two datasets. Also, we aim to assess the
transferability of the prediction model across different datasets.
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Figure 13 Percentage of NGFLC in conflict LC samples at dataset 2 and dataset 3

The analytical methods applied in Section 5.1 and Section 5.2 are replicated for dataset 2
and dataset 3. Figure 13 presents the percentage of NGFLC in conflict LC samples for these two
datasets. It is evident that NGFLC samples constitute over 50% of the total conflict LC samples.
This finding is not affected by different datasets, Groups, and SSMs (TTC or DRAC). Table 7
presents the results of TET, TIT, and CPI for these conflict LC samples. It demonstrated that the
average duration and severity of crash risk during NGFLCs are both higher compared to normal
LCs in dataset 2 and dataset 3.

Table 7 Results of TET, TIT, and CPI for NGFLCs and normal LCs at dataset 2 and dataset 3

SSM Threshold Dataset 2 Dataset 3
NGFLC (normal LC) NGFLC (normal LC)
Groupl Group2 Group3 Group4 Groupl Group2 Group3 Groupl
TET (s) 1s 4.1(1.7) 1.2(0) 2.8(0) 0.8(0) 3.6(1.2) 1.4(0) 3.2(0.5) 0.5(0)
2s 53(3.6) 240) 3.5(1.2) 1.2(00 4.1(23) 2.6(0.5) 3.7(1.3) 0.9(0)
3s 6.1(3.8) 3.3(0.9) 4.7(2.5) 1.7(0.5) 5.7(3.1) 3.2(1.2) 4.2(1.9) 1.1(0.2)
4s 6.9(4.2) 42(1.7) 5.6(34) 23(1.3) 6339 4.1(1.9) 54(2.6) 1.9(0.6)
TIT(s) 1s 1.9(0.6) 0.7(0) 1.4(0)  0.6(0) 1.3(0.4) 0.5(0) 2.1(0.2) 0.2(0)
2s 3.6(1.8) 1.6(0) 2.6(0.9) 13(0) 3.3(1.9) 1.1(0.9) 3.9(1.1) 0.6(0)
3s 6.2(3.4) 3.8(1.2) 4.1(2.7) 2.2(1.6) 6.5(3.6) 2.9(1.8) 5.3(2.6) 1.5(0.8)
4 9.5(6.1) 6.4(2.8) 7.7(4.8) 3.8(2.5) 8.5(5.7) 5.6(34) 8.1(4.8) 2.8(1.7)

CPI (%) 2m/s2 3726)  19(8)  31(24) 12(6)  34(22) 15(6)  27(18)  10(6)
3m/s2 21(18)  12(6)  23(15)  6(4) 19(14)  1133)  21(11)  8(2)
4m/s2 1509) 52 146)  4(1) 11(5)  8(1) 15(7)  5(0.4)
5m/s2 7(4) 2(1) 8(2) 10.5) 502 400.4) 42 2(0.2)

As expected, Table 8 suggests that the adjustments made to the time headways by the new
follower and the lane changer during NGFLC in dataset 2 and dataset 3 are similar to those
discussed in Section 5.2. These consistent observations across all three trajectory datasets
emphasize the significant impact of NGFLCs on the safety of surrounding vehicles and traffic
flow efficiency, highlighting their importance and the need for careful consideration in future
research.
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Table 8 Impact of NGFLCs and normal LCs on traffic flow efficiency at dataset 2 and dataset 3

Efficiency . Dataset 2 Dataset 3

measurement Vehicles Moments NGFLC NGFLC
(normal LC)  (normal LC)

New Start moment of LC 1.3(1.5) 1.8(1.7)

Time gap (s) follower End moment of LC 2.2(1.9) 3.1(1.9)

Lane Insertion moment of LC 2.2(3.4) 3.6(3.9)

changer End moment of LC 2.0(2.1) 3.2(2.6)

To assess the transferability of the binary logit model developed with considering the
original leader (model 2), we directly applied this model to the LC samples in dataset 2 and
dataset 3. The prediction performance of model 2 is detailed in Table 9. It can be seen from this
table that the recall, false alarm rate, and F1 score of model 2 in dataset 2 and dataset 3 are
comparable to those observed in dataset 1. This similarity results suggest that model 2 is
effectively transferable across different locations.

Table 9 Transferability results of model 2 at dataset 2 and dataset 3

Measure Model with original lane information
Dataset 2 Dataset 3

Recall 87% 89%

False alarm rate 10% 11%

F1 score 84% 86%

7. Conclusion

This study investigates a critical LC maneuver known as negative forced lane-changing
(NGFLC). Three vehicle trajectory datasets from different locations and cities are used, namely
datasets 1 to 3. Specifically, dataset 1 is used for modeling, and datasets 2 and 3 are used for
transferability testing. A classification procedure is proposed to distinguish between NGFLC and
normal LC samples. The results show that NGFLC samples constitute a significant percentage of
the LC samples, accounting for 33%, 36%, and 28% in each dataset. Based on these data, the
empirical analysis and predictive models offer four major contributions to the understanding of
NGFLC:

(a) Crash risk analysis: Five widely used SSMs are extended to a two-dimensional scope for
NGFLC and normal LC samples. The comparison results yield three key insights. First, NGFLCs
account for approximately 90% of extremely hazardous LC maneuvers, characterized by a TTC
value less than 1s or a DRAC value larger than 5m/s?. These are identified as the primary
contributors to LC crashes. Second, a notable potential crash risk is observed between the new
follower and the new leader during NGFLCs, while this risk is comparatively lower during
normal LCs. Lastly, NGFLCs tend to prolong the duration of danger and increase the severity of
crash risk during LC maneuvers.

(b) Traffic flow efficiency: This study quantifies the impact of LC maneuvers on traffic flow
efficiency by examining the changes in time gaps. Findings highlight that the lane changers are
more likely to increase the initial time gap after performing NGFLC maneuvers. Although we
observe that the new follower attempts to reduce the time gap, which holds for NGFLC and
normal LC, the extent of reduction in normal LCs is significantly greater than in NGFLCs. This
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implies that both the lane changer and the new follower involved in NGFLCs are more likely to
disrupt traffic flow.

(c) Contribution factors: With an awareness of the profound impact of NGFLC on traffic
flow, two binary logit models are developed to identify the critical factors affecting the
probability of an LC decision resulting in an NGFLC. These factors, such as time headway, the
number of rejected gaps, the average value of rejected gaps, the relative speed of the new
follower to the lane changer, and the relative speed of the new follower to the new leader
significantly impact the occurrence of NGFLCs. Moreover, incorporating the information about
the original leader improves the prediction accuracy. Notably, this information has been largely
ignored in previous studies.

(d) Transferability: Our insights and prediction models developed for NGFLC using dataset
1 are validated with dataset 2 and dataset 3. The results confirm that the negative outcomes of
NGFLC can be observed across different locations and cities. Also, the prediction model achieves
satisfactory accuracy when directly applied to these two datasets.

Despite this study providing a comprehensive view of the consequences and causes of
NGFLC, some limitations could merit further research. For example, our analysis focused on
only one type of NGFLC. Indeed, a variety of NGFLC could be observed in the traffic flow, such
as the lane changer overlapping with the new follower while the new follower successfully closed
the gap. In such a situation, the lane changer has to wait for the next gap. Thus, this NGFLC’s
impact may differ from the FLC we introduced in this study. Further efforts are needed to
examine different types of FLC to present a full understanding of the overlapping behavior
during the LC maneuver. Also, we only focused on the safety and efficiency issues on the target
lane. A more comprehensive evaluation could be conducted to explain the consequences of
NGFLC, such as the cooperation LC induced by NGFLC and its impact on the original lane. The
lateral overlap between two vehicles seems closely linked to sideswipe crashes. This study only
identified the NGFLC out of the normal LC. Further research is needed to investigate which
NGFLC is more likely to lead to a sideswipe crash.
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