On the distribution of urban road space for multimodal congested networks

Nan Zheng and Nikolas Geroliminis

Urban Transportation Systems Laboratory (LUTS), École Polytechnique Fédérale de Lausanne (EPFL)
Highlights

- Understand multimodal interactions at the network level
- Model the aggregated dynamics of a multimodal system
- Integrate traffic dynamics in planning and design
- Optimize system performance with space distribution and pricing
Why Macro?

- Humans make choices of routes, destinations and driving behavior (unpredictability)
- Not a clear distinction between free-flow and congested traffic states (complexity)
- Need for real-time hierarchical traffic management schemes (efficiency)

Solution (?):
A network based aggregated approach

“With four parameters I can fit an elephant”. JOHN VON NEUMANN
Multimodal networks

- In urban networks, buses usually share the same network with the other vehicles.
- Movement Conflicts in multi-modal urban traffic systems.
- Bus stops affect the system like variable red signals in a single lane (instead of blocking all lanes).
- Increasing bus frequency decreases the flow of vehicles but can increase the flow of passengers.

\[
\min_{\pi_i(t)} Z = \sum_{t,i,m} PHT_{t,i,m}(\pi_i(t))
\]

Performance Measures
- Vehicle Hours Traveled
- Vehicle Kilometers Traveled
- Passenger Hours Traveled
- Passenger Kilometers Traveled

Mobility (Accessibility)
- Emissions (Environ. Impacts)
- Costs (Users, Providers, etc.)

Road Space Used

- Competing modes
- Parking
- Pax vs. veh throughput

MULTIMODAL CITIES
Motivation – A multi-modal MFD

Simulated data – Downtown San Francisco

Zheng et al. (2013) – Ongoing
Intro to Variational Theory

- VT estimates exactly the MFD for a ring with no turns.
- For networks, this estimation is an upper bound.
- Results from real cases show that this is almost tight for homogeneous distribution of congestion.

\[q = \inf_u \{ku + R(u)\} \]

\[R(u) = \lim_{t_0 \to \infty} \inf_{P} \{\Delta(P): u_{\hat{P}} = u\}/t_0 \]

Daganzo and Geroliminis (2008) – TR part B
Geroliminis and Boyaci (2012) – TR part B
Leclercq and Geroliminis (2013) - ISTTT
Variational Theory for multimodal networks
The effect of dwell times in network capacity

Methodology - General representation of a multimodal system

\[\pi : \text{space share allocation} \]
\[n(t) : \text{accumulation of vehicles (all modes) in the regions at time } t \]
\[O(t) : \text{transfer flows (all modes) in the regions at time } t \]
\[Q(t) : \text{generated demand per mode in the regions at time } t \]
\[C(t) : \text{cost of travel in the regions at time } t \]
Methodology - Traffic flow dynamics (1)

- Mass conservation of vehicles (discretized):

\[
 n_{i}^{kc}(t + 1) = n_{i}^{kc}(t) + \frac{Q_{i}^{kc}(t + 1)}{ob_{i}^{c}} - \sum_{j=1}^{N} O_{i\rightarrow j}^{kc}(t) + \sum_{l=1}^{N} O_{l\rightarrow i}^{kc}(t), \quad \text{CAR}
\]

\[
 n_{i}^{kb}(t + 1) = n_{i}^{kb}(t) - \sum_{j=1}^{N} O_{i\rightarrow j}^{kb}(t) + \sum_{l=1}^{N} O_{l\rightarrow i}^{kb}(t), \quad \text{BUS}
\]

- \(n_{i}^{km}(t) \): accumulation of mode \(m \) in region \(i \) with next destination region \(k \) at time \(t \)
- \(O_{i\rightarrow j}^{km}(t) \): transfer flow of mode \(m \) from region \(i \) to \(j \) with final destination \(k \) at time \(t \)
- \(Q_{i}^{km}(t) \): demand generated \(k \) at time \(t \) in region \(i \) with next destination region \(k \), choosing mode \(m \)
- \(ob_{i}^{c} \): average number of passengers per car in region \(i \)
Methodology - Traffic flow dynamics (2)

- Conservation of passengers:

\[OB_{i}^{kb}(t + 1) = OB_{i}^{kb}(t) + Q_{i}^{kb}(t + 1) - \sum_{j \neq i}^{N} O_{i \rightarrow j}^{kb}(t) \cdot ob_{i}^{kb}(t) + \sum_{l=1}^{N} O_{i \rightarrow l}^{kb}(t) \cdot ob_{l}^{kb}(t) - b_{i}^{k} \cdot OB_{i}^{kb}(t) \cdot (1 - (1 - \theta_{i})^{z}) \]

\(OB_{i}^{kb}(t) \): the number of bus on-board passengers currently in region \(i \) with final destination \(k \)

\(ob_{i}^{kb}(t) \): the average number of on-board passengers per bus from region \(i \) to \(k \)

\(b_{i}^{k} \): binary variable indicating if reaching destination, \(b_{i}^{k} = 1 \) for \(i = k \) and 0 otherwise

\(\theta_{i} \): probability of reaching destination

\(z \): number of stops that a bus travels during interval \(t \)

\(\theta_{i} \) is a Bernoulli trial repeated \(z \) times, \(\theta_{i} = \left(\frac{\bar{L}'_{ib}}{S_{i}} \right)^{-1} \), where \(\bar{L}'_{ib} \) is the trip length \(S_{i} \) and is the bus station spacing

Laboratory Urban Transportation Systems (LUTS), EPFL, Switzerland
Methodology – Multimodal travel time estimation

- Speed estimation for single-mode only region:
 \[V_i^m(t) \overset{\text{def}}{=} \frac{P_i^m(t)}{n_i^m(t)} = \frac{O_i^m(t) \cdot \bar{L}_{im}}{n_i^m(t)} \]

- Speed estimation for mixed mode region:
 \[V_i^b(t) = V_i^c(t) \cdot \alpha_i^b(t), \quad \alpha_i^b(t) = \frac{TT_i^b(t)}{TT_i^b(t) + TT_d^b(t)} \]

- Travel time estimation:
 \[TT_i^m(t) = \frac{\bar{L}_{im}}{V_i^m(t)} \]

- Assumptions:
 Buses travel with the same speed of cars, if not dwelling for passengers
Methodology – Mode choice

- Utility of traveling by each mode:

\[U_{i}^{kc}(t) = - \sum_{j \in \{s_{i}^{k}\}} (TT_{c}^{i}(t) + C_{j}^{c}(t)), \quad U_{i}^{kb}(t) = - \sum_{j \in \{s_{i}^{k}\}} (TT_{j}^{b}(t) + D_{j}^{b}(t)) \]

- Mode choice calculation:

\[p_{i}^{kb}(t + 1) = p_{i}^{kb}(t) + \beta_{1} \cdot \Delta U_{i}^{k}(t) + \beta_{2} \cdot (\Delta U_{i}^{k}(t) - \Delta U_{i}^{k}(t - 1)) \]

\[U_{i}^{km}(t) : \text{Utility of traveling by mode } m \text{ from region } i \text{ to } k \text{ at time } t \]
\[C_{j}^{c}(t) : \text{cost other than travel time for using cars in region } j \text{ at time } t \]
\[D_{j}^{b}(t) : \text{discomfort for using buses in region } j \text{ at time } t \]
\[p_{i}^{kb}(t) : \text{percentage of the demand generated at time } t \text{ in region } i \text{ choosing mode bus} \]
Methodology – Optimization framework

- System performance measure:

\[PHT(\pi) = \sum_{t} \sum_{i} \sum_{k} (n_{i}^{kc}(t) \cdot ob_{j}^{kc} + OB_{i}^{kb}(t)) \cdot T \]

- Objective function:

\[\min_{\pi_{i}(t)} Z = \sum_{t,i,m} PHT_{t,i,m}(\pi_{i}(t)) \]

\(\pi_{i}(t) \): the space distribution plan for region \(i \) at time \(t \)

- Optimization algorithm: Lagrangian SQP with multiple initial search
Case study set-up

- Mixed traffic in periphery
- Dedicated bus lanes in center

Laboratory Urban Transportation Systems (LUTS), EPFL, Switzerland
Results - Optimal *static* space distribution

Space efficiency for all modes (trips/ln-km):

Space efficiency for bus lanes (trips/ln-km):
Results - Optimal *dynamic* space distribution
Results - Optimal *dynamic* space distribution & *pricing*

- More reliable MFD states
- TOLL = DELAY SAVINGS
- Robust in demand uncertainty
- Robust in Demand increase
Results – Demand Increase

- Fixed pricing
- Optimal pricing
- No pricing

PHT (person-hrs)

Bus occupancy (pax/bus)

Demand increase

Toll price (in CHF)

Accumulation

Outflow

15% increase

25% increase

No pricing

Pricing of the base case

Pricing for optimal PHT
Ongoing work

- Deeper analysis of multiple regions
- Incorporating cruising-for-parking + restriction/pricing
- Combining space distribution with signal control, bus priority
- Intergrating additional modes
- Validation with field-data
- Heterogeneity among users and different regions