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 Understand multimodal interactions at the network level

* Model the aggregated dynamics of a multimodal system

* Integrate traffic dynamics in planning and design

* Optimize system performance with space distribution and
pricing

Taxis Cars
Buses

Amount of space required to transport the
same number of passengers by car, bus or bicycle.
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* Humans make choices of routes, @w&%ﬁ
destinations and driving behavior e
(unpredictability)

Network flow

0 20 40 60 80

* Not a clear distinction between free-

flow and congested traffic states [ Network density |
(complexity)
* Need for real-time hierarchical traffic

management schemes (efficiency)

Solution (?):
A network based aggregated approach

“With four parameters | can fit an elephant”.
JOHN VON NEUMANN 3



* Inurban networks, buses usually share the same
network with the other vehicles.

*  Movement Conflicts in multi-modal urban traffic fi
systems.

e Bus stops affect the system like variable red signals in
a single lane (instead of blocking all lanes).

* Increasing bus frequency decreases the flow of
vehicles but can increase the flow of passengers.

minZ = PHT, ; ., (1r;(t))
(L) "

t,im

Competing modes
*Parking
*Pax vs. veh throughput

MULTIMODAL CITIES
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Motivation — A multi-modal MFD
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Simulated data — Downtown San Francisco
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Intro to Variational Theory
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* VT estimates exactly
the MFD for aring
with no turns.

* For networks, this
estimation is an
upper bound

e Results from real
cases show that this
is almost tight for

homogeneous
distribution of
congestion.
_ — Tim i A Daganzo and Geroliminis (2008) — TR part B
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Variational Theory for multimodal networks
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The effect of dwell times in network capacity
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| | | |
ethoao 04y - General representatlon of a multimodal system
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[ Initial state |
\ /
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v Taxis Cars
Current Buses

traffic state

| -
n(t), O(t) Mode ¢ Current Cars Buses
\ ! choice demand Taxis Taxis
i OI
Return n(t+dt) BT /Q(t)
: dynamics I Taxis Carsl I Car:.i Buses
ld Buses Taxis
n(t; E Cars Buses
Taxis  Taxis |}
time end?
System
dynamics

TT :space share allocation
n(t): accumulation of vehicles (all modes) in the regions at time t
O (t): transfer flows (all modes) in the regions at time t
Q(t): generated demand per mode in the regions at time t
C (t): cost of travel in the regions at time t

([l

ECOLE POLYTECHNIQUE
FEDERALE DE LAUSANNE




Methodology - Traffic flow dynamics (1)

',u"l,u"-"l.,ur I,u"-"l.,-" I,u"-"l.,-" I,u"-"l.,-" I,u"-"l.,-" I,u"-"l.,-" I,u"-"l.,-" I,u"-"l.,-" I,u"-"l.,-" I,u"-"l.,-" I,u"-"l.,-" I,u"-"l.,-" I,u"-"l.,-" I,u"-"l.,-" I,u"-"l.,-" I,u"-"l.,-" I,u"-"l.,-" I,u"-"l.,-" I,u"-"l.,-" I,u"-"l.,-" I,u"-"l.,-" I,u"-"l.,-" I,u"-"l.,-" I,u"-"l.,-" I,u"-"l.,-" I,u"-"l.,-" I,u"-"l.,-" I,u"-"l.,-" I,u"-"l.,-" I,u"-"l.,u'
R

» Mass conservation of vehicles (discretized):

kc N N
e+ 1)
nke(t+1) =nk) + = e~ Z 05 () + Z 0/ (®), CAR
! j=1 =1
N N
mPE+ D) =P - ) 00 + ) 02, BUS
j=1 =1

nﬁ"‘m(t) . accumulation of mode m in region i with next destination region k at time t
0;{_73 (t): transfer flow of mode m from region i to j with final destination k at time t
Q{Cm (t): demand generated k at time t in region i with next destination region k, choosing mode m

C . . .
ob; :average number of passengers per car in region i

.(I)ﬂ- Labomforg Urban Transportaﬁon Sgstenﬁs (LUTS), EPFL, Switzerland
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mics (2)
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Methodology - Traffic flow d
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» Conservation of passengers:

OB’ (t+1) = 0B"(t) + Qf*(t + 1) — Z 0f2.(t) - obf" (t) +

j#i

N
Z 0K2.(£) - ob (£) — b¥ - 0B¥ () - (1 — (1 — 6,)7)
=1

OBL-kb(t) . the number of bus on-board passengers currently in region i with final destination k
bg‘b (t): the average number of on-board passengers per bus from region i to k

i . binary variable indicating if reaching destination, bf =1 for i= k and O otherwise
0; . probablity of reaching destination
z : number of stops that a bus travels during interval t
L's\
1 —
0; is a Bernoulli trial repeated z times, 0i = o E where L';;, is the trip length S; and
is the bus station spacing ¥
Gl
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Methodology — Multimodal travel time estimation
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P (t)  O"(t) "Ly

» Speed estimation for single-mode only region:  V/"(¢t) &

nt () ()
» Speed estimation for mixed mode region: VE(t) = VE(E) - al(t), al(t) = TTy (6)
p g . i - Vi i ’ i TTib(t) + TT;((I)
' imation: TT(¢t) = Lim
* Travel time estimation: M (t) = 70

V™ (t): travel speed of mode m in region i
P/ (t): travel production of mode m in region i

UL-m (t) : outflow of mode m from region i (given by MFD)

Ly  :average trip length of mode m in region i "y N : %E
TT{™(t) : travel time of mode m in region i without scheduled stops at timefgsl = - — — — - — - — v =
b . . .
TTy (t): average time spent by bus dwelling for passengers at time t

* Assumptions:
Buses travel with the same speed of cars, if not dwelling for passengers

Laboratory Urban Transpertation Systers (LUTS), EPEL, Switzerland
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Methodology - Mode choice
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« Utility of traveling by each mode:

Uk == ) (T + GF@), U = = ) (TP + D)

jefs) jefsk}

* Mode choice calculation:
PP (t+1) = pfP () + B - AUF(D) + By (AUF(©) — AUF (e - D)

0O 10 20 30 40 50 60 70 80 90 100

0
Uikm(t) : Utility of traveling by mode m from -2
region i to k at time t 4
CF(t) . : -6
j \&J: cost other than travel time for using . 8
cars in region jat time t £ 10
Db t . . . . . = -12
fi (t) : discomfort for using buses in region j
at time t 14
kb -16
Pi (®). percentage of the demand generated 18
. . . . . —Ucar C-C ——Ubus C-C
at time t in region i choosing mode bus -20

.(l)ﬂ- Labomfurs Urbah Trahsport'aﬁoh Sgstems (LUTS), EPFL, Sw?tzer’ahd
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Methodology - Optimization framework

R

» System performance measure:

PHT(m) = Y ' ) (nke(t)- ob}* + 0BF () -
t i k

 Objective function:

minZ = Z PHTy ;1 (1r;(1))

mi(t) t,im

n;(t) : the space distribution plan for region i at time t

 Optimization algorithm: Lagrangian SQP with multiple initial search

([l
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Results - Optimal static space distribution
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Results - Optimal dynamic space distribution

e

800

D
o
o

w
o
o

400

300

200

Demand (person/hr)

100

Time interval

I D

ECOLE POLYTECHNIQUE
FEDERALE DE LAUSANNE

- 0.18
——demand | 016 =25 .
L 014 3 —=gtatic
012 @ 5 dynamic
o -
01 g g 15
O >
- 0.08 9
& £ 10
- 006 @ s
3
T T - 004 B 3 5
3
- 0.02 @
t; t, 0
0 0 10 20 30 40 50 60 70 80 90 100
0 20 40 60 80 100 Time interval




Results - Optimal dynamic space distribution & pricing

e

N
(0]

N
o

—dynamic

[EEN
(S5

=—dynamic with
pricing

[E
o

u

Bus occupancy (person/bus)

o

0 10 20 30 40 50 60 70 80 90 100
Time interval

- (b)
2 1500 o
o
£ ® dynamic
3 1000 ¢ dynamic with pricing
500
4
J
o &

0 2000 4000 6000 8000 10000
accumulation

('

ECOLE POLYTECHNIQUE
FEDERALE DE LAUSANNE

©
>

o
w

===dynamic

—=dynamic
with pricing

Bus choice
o
N

o
[EEN

0O 10 20 30 40 50 60 70 80 90 100
Time interval

More reliable MFD states
TOLL = DELAY SAVINGS
Robust in demand uncertainty

Robust in Demand increase




PR

e e e e

—&— fixed pricing

30000 m . ..
—&—fixed pricing é 55 —&— optimal pricing
x no pricin
—&— optimal pricing S b &
__ 27000 > 45 the optimal price
w . . (%]
= no pricing €
5 g —
o [S]
a 35
g 24000 / o ‘4://0/’—9/‘
Q. / %)
- =]
= _— @
z / A 25
21000 > /
A
15
0% 10% 20% 30%
18000 .
0% 10% 20% 30% Demand increase
Demand increase
15% increase 25% increase
1500 g 1500
2 2
© 1000 © 1000
'g / no pricing 'g no pricing
o . . o ®
500 ¢ pricing of the base case 500 o @ pricing of the base case
[ 4 ® pricing for optimal PHT L . .
® F ® pricing for optimal PHT
o
o# o @
0 2000 4000 6000 8000 10000 0 2000 4000 6000 8000 10000
Accumulation Accumulation

([l

ECOLE POLYTECHNIQUE
FEDERALE DE LAUSANNE




A
e

 Deeper analysis of multiple regions

* Incorporating cruising-for-parking + restriction/pricing

« Combining space distribution with signal control, bus priority
* Intergrating additional modes

» Validation with field-data

 Heterogeneity among users and different regions
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