Differentiated Pricing of Urban Transportation Networks with Vehicle-Tracking Technologies

Mahmood Zangui
Yafeng Yin*
Siriphong Lawphongpanich
Shigang Chen

Department of Civil and Coastal Engineering
University of Florida

July 18, 2013
Price Differentiation

Economic concept

- Defined by Dupuit (1894)
- Identical products sold at different prices

Examples in transit fare

- One two-way ticket is cheaper than two one-way tickets
- Senior citizens pay lower bus fare

Literature of congestion pricing

- Differentiation with respect to vehicle type
- Differentiation with respect to value of time

We investigate a new differentiated congestion pricing scheme that differentiates travelers with respect to their travel characteristics.
Price Differentiation

Economic concept
- Defined by Dupuit (1894)
- Identical products sold at different prices

Examples in transit fare
- One two-way ticket is cheaper than two one-way tickets
- Senior citizens pay lower bus fare

Literature of congestion pricing
- Differentiation with respect to vehicle type
- Differentiation with respect to value of time

We investigate a new differentiated congestion pricing scheme that differentiates travelers with respect to their travel characteristics.
Price Differentiation

Economic concept
- Defined by Dupuit (1894)
- Identical products sold at different prices

Examples in transit fare
- One two-way ticket is cheaper than two one-way tickets
- Senior citizens pay lower bus fare

Literature of congestion pricing
- Differentiation with respect to vehicle type
- Differentiation with respect to value of time

We investigate a new differentiated congestion pricing scheme that differentiates travelers with respect to their travel characteristics.
Price Differentiation

Economic concept
- Defined by Dupuit (1894)
- Identical products sold at different prices

Examples in transit fare
- One two-way ticket is cheaper than two one-way tickets
- Senior citizens pay lower bus fare

Literature of congestion pricing
- Differentiation with respect to vehicle type
- Differentiation with respect to value of time

We investigate a new differentiated congestion pricing scheme that differentiates travelers with respect to their *travel characteristics*.
How does a differentiated pricing scheme work?
Anonymous scheme: Everyone pays the same toll for the same link.
Differentiated scheme: Toll depends on travel characteristics.

Level of differentiation:
- L0: None → anonymous scheme
- L1: Origin → origin-specific scheme
- L2: Origin and destination → OD-specific scheme
- L3: Path → path-based scheme
Anonymous scheme: Everyone pays the same toll for the same link. Differentiated scheme: Toll depends on travel characteristics.

Level of differentiation:

- **L0**: None \rightarrow anonymous scheme
- **L1**: Origin \rightarrow origin-specific scheme
- **L2**: Origin and destination \rightarrow OD-specific scheme
- **L3**: Path \rightarrow path-based scheme
Level of Differentiation

<table>
<thead>
<tr>
<th>Path</th>
<th>L0</th>
<th>L1</th>
<th>L2</th>
<th>L3</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>π_9</td>
<td>π_9^2</td>
<td>$\pi_9^{2,3}$</td>
<td>$\pi_{4,8,9,11}$</td>
</tr>
<tr>
<td>1</td>
<td>π_9</td>
<td>π_9^1</td>
<td>$\pi_9^{1,3}$</td>
<td>$\pi_{2,8,9,11}$</td>
</tr>
<tr>
<td>1</td>
<td>π_9</td>
<td>π_9^1</td>
<td>$\pi_9^{1,4}$</td>
<td>$\pi_{2,8,9,12}$</td>
</tr>
<tr>
<td>1</td>
<td>π_9</td>
<td>π_9^1</td>
<td>$\pi_9^{1,4}$</td>
<td>$\pi_{1,6,9,12}$</td>
</tr>
</tbody>
</table>
Benefits of Differentiation

- **Price differentiation**
 - First-best condition: reduce toll revenue
 - Second-best condition: reduce travel time
 - \(\pi_a^1 \neq \pi_a^2 \)

- **Relaxation of anonymous pricing**
 - Potential for better results
Example: First-best Condition

- All links are tollable \rightarrow System optimum is achievable with anonymous tolling
 - $x_a = \bar{x}_a$ $\forall a \in A$
- Benefits of price differentiation can only be reflected on a secondary objective
- Toll revenue is a financial burden on travelers
- Higher toll revenue implies less public acceptance
- Choose the tolls with minimum revenue
 - $\min \sum_{w \in W} \sum_{p \in P_w} \pi_p f_p$
Example: First-best Condition

Table: First-best pricing for nine-node network

<table>
<thead>
<tr>
<th>Tolling Scheme</th>
<th>Toll Revenue</th>
<th>OD Generalized Travel Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Amount</td>
<td>Reduction</td>
</tr>
<tr>
<td>Anonymous</td>
<td>887.6</td>
<td>0%</td>
</tr>
<tr>
<td>Origin-specific</td>
<td>311.6</td>
<td>65%</td>
</tr>
<tr>
<td>OD-specific</td>
<td>295.6</td>
<td>67%</td>
</tr>
<tr>
<td>Path-based</td>
<td>263.6</td>
<td>70%</td>
</tr>
</tbody>
</table>
Example: Second-best Condition

- Suppose links $a \in \bar{\Psi}$ are untollable
 - Origin-specific $\gamma^{o(w)}_a = 0 \quad \forall w \in W, a \in \bar{\Psi}$
 - OD-specific $\gamma^{w}_a = 0 \quad \forall w \in W, a \in \bar{\Psi}$
- Travel time as the performance measure
- Choose tolls that minimize total system travel time
 - $\min \sum_{w \in W} \sum_{p \in P_w} t_p(f) f_p$
Example: Second-best Condition

Table: Second-best pricing for nine-node network

<table>
<thead>
<tr>
<th>Tolling Scheme</th>
<th>Total Travel Time</th>
<th>OD Generalized Travel Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Amount</td>
<td>Saving</td>
</tr>
<tr>
<td>UE</td>
<td>2455.9</td>
<td>0%</td>
</tr>
<tr>
<td>Anonymous</td>
<td>2361.2</td>
<td>46.9%</td>
</tr>
<tr>
<td>Origin-specific</td>
<td>2306.1</td>
<td>74.2%</td>
</tr>
<tr>
<td>OD-specific</td>
<td>2281.7</td>
<td>86.2%</td>
</tr>
<tr>
<td>SO</td>
<td>2253.9</td>
<td>100%</td>
</tr>
</tbody>
</table>
How to design optimal differentiated pricing schemes?
Finding Optimal Differentiated Schemes

Feasible region:

\[
\sum_{p \in P_w} f_p = d_w \\
\forall w \in W
\]

\[
f_p \left(t_p (f) + \pi_p - \lambda_w \right) = 0 \\
\forall p \in P_w, w \in W
\]

\[
t_p (f) + \pi_p - \lambda_w \geq 0 \\
\forall p \in P_w, w \in W
\]

\[
f_p \geq 0 \\
\forall p \in P_w, w \in W
\]

\[
\pi_p \geq 0 \\
\forall p \in P_w, w \in W
\]

\[
x_a = \sum_{w \in W} \sum_{p \in P_w} \delta_{ap} f_p \\
\forall a \in A
\]
Finding Optimal Differentiated Schemes

Additional constraints:

- **Origin-specific pricing**

\[
\pi_p = \sum_{a \in A} \delta_{ap} \gamma^o(w) \\
\gamma^o(w) \geq 0
\]

- **OD-specific pricing**

\[
\pi_p = \sum_{a \in A} \delta_{ap} \gamma^w_a \\
\gamma^w_a \geq 0
\]
Finding Optimal Differentiated Schemes

Objective functions:

- First-best condition

\[
\min \sum_{w \in W} \sum_{p \in P_w} \pi_p f_p
\]

- Second-best condition

\[
\min \sum_{w \in W} \sum_{p \in P_w} t_p(f) f_p
\]
Example: Path-based Pricing Scheme (First-best Condition)

\[
\begin{align*}
\min & \quad \sum_{w \in W} \sum_{p \in P_w} \pi_p f_p \\
\text{s.t.} & \quad \sum_{p \in P_w} f_p = d_w \quad \forall w \in W \\
& \quad f_p (t_p (f) + \pi_p - \lambda_w) = 0 \quad \forall p \in P_w, w \in W \\
& \quad t_p (f) + \pi_p - \lambda_w \geq 0 \quad \forall p \in P_w, w \in W \\
& \quad f_p \geq 0 \quad \forall p \in P_w, w \in W \\
& \quad \pi_p \geq 0 \quad \forall p \in P_w, w \in W \\
& \quad \bar{x}_a = \sum_{w \in W} \sum_{p \in P_w} \delta_{ap} f_p \quad \forall a \in A
\end{align*}
\]
Solution Algorithms

- The formulations presented above all belong to the class of mathematical programs with complementarity constraints (MPCC).
- These problems are non-convex and standard stationary conditions, i.e., KKT conditions, may not hold for them because they do not satisfy Mangasarian-Fromovitz constraint qualification (MFCQ).
- Efficient algorithms may be developed to solve the above formulations by exploring special properties or structures that they may possess.
Example: Path-based Pricing Scheme (First-best Condition)

\[
\min \sum_{w \in W} \lambda_w d_w \\
\text{s.t.} \\
\sum_{p \in P_w} f_p = d_w \quad \forall w \in W \\
f_p (\bar{t}_p + \pi_p - \lambda_w) = 0 \quad \forall p \in P_w, w \in W \\
\bar{t}_p + \pi_p - \lambda_w \geq 0 \quad \forall p \in P_w, w \in W \\
f_p \geq 0 \quad \forall p \in P_w, w \in W \\
\pi_p \geq 0 \quad \forall p \in P_w, w \in W \\
\bar{x}_a = \sum_{w \in W} \sum_{p \in P_w} \delta_{ap} f_p \quad \forall a \in A
\]
Reformulation 1: MILP-1

\[
\begin{align*}
\text{min} & \quad \lambda^T d \\
\text{s.t.} & \quad f \in \bar{F} \\
& \quad f_p \leq y_p d_w \quad \forall p \in P_w, w \in W \\
& \quad \bar{t}_p + \pi_p - \lambda_w \leq (1 - y_p)M \quad \forall p \in P_w, w \in W \\
& \quad \bar{t}_p + \pi_p - \lambda_w \geq 0 \quad \forall p \in P_w, w \in W \\
& \quad \pi_p \geq 0, \quad y_p \in \{0, 1\} \quad \forall p \in P_w, w \in W
\end{align*}
\]

where \(\bar{F} = \{ \sum_{p \in P_w} f_p = d_w, \forall w \in W; f_p \geq 0, \forall p \in P_w, w \in W; \bar{x}_a = \sum_{w \in W} \sum_{p \in P_w} \delta_{ap} f_p, \forall a \in A \} \)

- One binary variable for each path, which is equal to 1 if the path is utilized.
Reformulation 2: MILP-2

\[
\begin{align*}
\min & \quad \sum_{w \in W} \left(\sum_{p \in P^w} \bar{t}_p y_p \right) d_w \\
\text{s.t.} & \quad f \in \bar{F} \\
& \quad \sum_{p \in P^w} y_p = 1 \quad \forall w \in W \\
& \quad f_p \leq d_w \left(\sum_{k \in P^w \text{ & } \bar{t}_k \geq \bar{t}_p} y_k \right) \quad \forall p \in P^w, w \in W \\
& \quad \pi_p \geq 0, \quad y_p \in \{0, 1\} \quad \forall p \in P^w, w \in W
\end{align*}
\]

- One binary variable for each path, equal to 1 if it is the longest utilized path of the OD pair. The longest utilized path is toll free.
- Linear mixed integer model, can be solved by CPLEX.
Computational Experiments

Sioux Falls Network
- 24 nodes
- 76 links
- 528 OD pairs

Anaheim Network
- 416 nodes
- 914 links
- 1406 OD pairs
Results

Table: Comparisons of toll revenues

<table>
<thead>
<tr>
<th></th>
<th>Toll Revenue</th>
<th>Reduction</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Anonymous</td>
<td>Path-based</td>
</tr>
<tr>
<td>Anaheim</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Original Data</td>
<td>59766</td>
<td>2178</td>
</tr>
<tr>
<td>Rand. Data 1</td>
<td>56381</td>
<td>1812</td>
</tr>
<tr>
<td>Rand. Data 2</td>
<td>65959</td>
<td>6826</td>
</tr>
<tr>
<td>Rand. Data 3</td>
<td>77598</td>
<td>5107</td>
</tr>
<tr>
<td>Rand. Data 4</td>
<td>67984</td>
<td>3570</td>
</tr>
<tr>
<td>Sioux Falls</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Original Data</td>
<td>20.666</td>
<td>0.183</td>
</tr>
<tr>
<td>Rand. Data 1</td>
<td>19.462</td>
<td>0.088</td>
</tr>
<tr>
<td>Rand. Data 2</td>
<td>59.019</td>
<td>0.085</td>
</tr>
<tr>
<td>Rand. Data 3</td>
<td>27.102</td>
<td>0.108</td>
</tr>
<tr>
<td>Rand. Data 4</td>
<td>32.862</td>
<td>0.069</td>
</tr>
</tbody>
</table>
Is there any issue associated with these schemes?
Location Privacy

- Location privacy: the ability to prevent other parties from learning one’s current or past location.
- For anonymous tolling, it is possible to design a privacy-preserving electronic toll collection system.
- It is difficult, if not impossible, to design a privacy-preserving differentiated pricing system because differentiated pricing requires the location information to determine tolls.
Individuals value their privacy differently

They can be grouped into categories of privacy unconcerned, privacy pragmatists, and privacy fundamentalists

Mathematically, we can use a distribution to represent different individual valuations of privacy across the population

If travelers value their privacy highly, the savings of travel cost that they may enjoy from differentiated schemes will be offset by the loss of their privacy
Who benefits from differentiated schemes?

We now use origin-specific pricing as an example for modeling privacy. For each OD-pair w:

- Those who value their privacy less will more likely benefit from price differentiation.
- Travel cost saving: $\lambda_{w,0} - \lambda_{w,1}$
- The percentage of motorists who will be better off under origin-specific pricing: $\int^{\lambda_{w,0} - \lambda_{w,1}}_0 \xi(z)dz$

\[\xi(\theta)\]

\[\lambda_{w,0} - \lambda_{w,1}\]
Addressing Privacy Concerns

We propose an incentive program that allows each traveler to opt in to differentiated schemes

- Self-selection mechanism: travelers who choose to reveal their location information will pay differentiated tolls while those who remain anonymous will pay uniform tolls
- Anonymous scheme preserves location privacy
- Incentives, such as subsidies or credits, can be provided to encourage travelers to participate in differentiated scheme
- In the simplest setting, the travel cost difference between differentiated and anonymous schemes can be viewed as incentive
Design of Incentive Program

- Demand split constraints:

\[d_{w,0} + d_{w,1} = d_w \quad \forall w \in W \]
\[\sum_{p \in P_w} f_{p,c} = d_{w,c} \quad \forall w \in W, c \in \{0, 1\} \]
\[d_{w,1} = \Xi(\lambda_{w,0} - \lambda_{w,1})d_w \quad \forall w \in W \]
\[d_{w,0}, d_{w,1} \geq 0 \quad \forall w \in W \]
Tolled User Equilibrium

- Tolled user equilibrium

\[\begin{align*}
 f_{p,c} \left(t_{p}(f) + \pi_{p,c} - \lambda_{w,c} \right) &= 0 \\
 t_{p}(f) + \pi_{p,c} - \lambda_{w,c} &\geq 0 \\
 \pi_{p,c} &\geq 0 \\
 \pi_{p,0} &= \sum_{a \in A} \delta_{ap} \gamma_a \\
 \gamma_a &\geq 0 \\
 \pi_{p,1} &= \sum_{a \in A} \delta_{ap} \gamma_a^o(w) \\
 \gamma_a^o(w) &\geq 0
\end{align*} \]

\[\forall p \in P_w, \ w \in W, \ c \in \{0, 1\} \]

\[\forall p \in P_w, \ w \in W, \ c \in \{0, 1\} \]

\[\forall p \in P_w, \ w \in W \]

\[\forall a \in A \]

\[\forall p \in P_w, \ w \in W \]

\[\forall a \in A, \ w \in W \]
Objective functions

- First-best network conditions (all links are tollable)

$$\min \sum_{w \in W} \left(\int_{0}^{\lambda_{w,0} - \lambda_{w,1}} d_w \xi(z) zdz + \sum_{p \in P_w} (\pi_p,0 f_p,0 + \pi_p,1 f_p,1) \right)$$

- Second-best network conditions (some of the links are untollable)

$$\min \sum_{w \in W} \left(\int_{0}^{\lambda_{w,0} - \lambda_{w,1}} d_w \xi(z) zdz + \sum_{p \in P_w} t_p(f) f_p \right)$$
Implementation on Nine-node Network

Table: Incentive program under first-best conditions

<table>
<thead>
<tr>
<th>Pricing Scheme</th>
<th>Distribution of β</th>
<th>$E(\beta)$</th>
<th>Toll Rev.</th>
<th>Privacy Cost</th>
<th>Total User Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anonymous</td>
<td>-</td>
<td>-</td>
<td>887.60</td>
<td>0.00</td>
<td>887.60</td>
</tr>
<tr>
<td>Origin-specific</td>
<td>- 2</td>
<td>311.60</td>
<td>200.00</td>
<td>511.60</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- 4</td>
<td>311.60</td>
<td>400.00</td>
<td>711.60</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- 8</td>
<td>311.60</td>
<td>800.00</td>
<td>1111.60</td>
<td></td>
</tr>
<tr>
<td>Hybrid</td>
<td>$U(0, 4)$</td>
<td>2</td>
<td>247.82</td>
<td>28.46</td>
<td>276.28</td>
</tr>
<tr>
<td></td>
<td>$U(0, 8)$</td>
<td>4</td>
<td>235.25</td>
<td>58.47</td>
<td>293.72</td>
</tr>
<tr>
<td></td>
<td>$U(0, 16)$</td>
<td>8</td>
<td>220.76</td>
<td>116.96</td>
<td>337.72</td>
</tr>
<tr>
<td></td>
<td>$EXP(0.500)$</td>
<td>2</td>
<td>249.84</td>
<td>17.49</td>
<td>267.33</td>
</tr>
<tr>
<td></td>
<td>$EXP(0.250)$</td>
<td>4</td>
<td>237.43</td>
<td>35.52</td>
<td>272.95</td>
</tr>
<tr>
<td></td>
<td>$EXP(0.125)$</td>
<td>8</td>
<td>213.08</td>
<td>71.02</td>
<td>284.10</td>
</tr>
</tbody>
</table>

- Anonymous scheme yields highest toll revenue, and origin-specific leads to highest privacy cost.
- The hybrid scheme offers an option for travelers of high value of privacy to remain anonymous. Such a self-selection mechanism leads to much less loss of privacy and subsequently lower total user cost.
Table: Incentive program under second-best conditions

<table>
<thead>
<tr>
<th>Pricing Scheme</th>
<th>Distribution of β</th>
<th>$E(\beta)$</th>
<th>Travel Time</th>
<th>Privacy Cost</th>
<th>Total System Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anonymous</td>
<td>-</td>
<td>-</td>
<td>2361.16</td>
<td>0.00</td>
<td>2361.16</td>
</tr>
<tr>
<td>Origin-specific</td>
<td>-</td>
<td>2</td>
<td>2306.10</td>
<td>200.00</td>
<td>2506.10</td>
</tr>
<tr>
<td></td>
<td>-</td>
<td>4</td>
<td>2306.10</td>
<td>400.00</td>
<td>2706.10</td>
</tr>
<tr>
<td></td>
<td>-</td>
<td>8</td>
<td>2306.10</td>
<td>800.00</td>
<td>3106.10</td>
</tr>
<tr>
<td>Hybrid</td>
<td>$U(0, 4)$</td>
<td>2</td>
<td>2291.79</td>
<td>9.13</td>
<td>2300.92</td>
</tr>
<tr>
<td></td>
<td>$U(0, 8)$</td>
<td>4</td>
<td>2296.76</td>
<td>13.08</td>
<td>2309.84</td>
</tr>
<tr>
<td></td>
<td>$U(0, 16)$</td>
<td>8</td>
<td>2304.63</td>
<td>17.57</td>
<td>2322.20</td>
</tr>
<tr>
<td></td>
<td>$EXP(0.500)$</td>
<td>2</td>
<td>2291.45</td>
<td>5.82</td>
<td>2297.27</td>
</tr>
<tr>
<td></td>
<td>$EXP(0.250)$</td>
<td>4</td>
<td>2293.47</td>
<td>9.56</td>
<td>2303.04</td>
</tr>
<tr>
<td></td>
<td>$EXP(0.125)$</td>
<td>8</td>
<td>2299.10</td>
<td>13.30</td>
<td>2312.40</td>
</tr>
</tbody>
</table>

- Anonymous scheme yields highest travel time, and origin-specific leads to highest privacy cost.
- The hybrid scheme is able to reduce total system cost.
Table: Incentive program under second-best conditions

<table>
<thead>
<tr>
<th>Pricing Scheme</th>
<th>Distribution of β</th>
<th>$E(\beta)$</th>
<th>Travel Time</th>
<th>Privacy Cost</th>
<th>Total System Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anonymous</td>
<td>-</td>
<td>-</td>
<td>74.043</td>
<td>0.000</td>
<td>74.043</td>
</tr>
<tr>
<td>Origin-specific</td>
<td>-</td>
<td>0.02</td>
<td>73.600</td>
<td>7.212</td>
<td>80.272</td>
</tr>
<tr>
<td></td>
<td>-</td>
<td>0.04</td>
<td>73.600</td>
<td>14.424</td>
<td>87.474</td>
</tr>
<tr>
<td></td>
<td>-</td>
<td>0.08</td>
<td>73.600</td>
<td>28.848</td>
<td>101.908</td>
</tr>
<tr>
<td>Hybrid</td>
<td>$U(0,0.04)$</td>
<td>0.02</td>
<td>73.294</td>
<td>0.118</td>
<td>73.412</td>
</tr>
<tr>
<td></td>
<td>$U(0,0.08)$</td>
<td>0.04</td>
<td>73.421</td>
<td>0.138</td>
<td>73.421</td>
</tr>
<tr>
<td></td>
<td>$U(0,0.16)$</td>
<td>0.08</td>
<td>73.591</td>
<td>0.163</td>
<td>73.753</td>
</tr>
<tr>
<td></td>
<td>$\text{EXP}(50.0)$</td>
<td>0.02</td>
<td>73.272</td>
<td>0.086</td>
<td>73.357</td>
</tr>
<tr>
<td></td>
<td>$\text{EXP}(25.0)$</td>
<td>0.04</td>
<td>73.355</td>
<td>0.106</td>
<td>73.461</td>
</tr>
<tr>
<td></td>
<td>$\text{EXP}(12.5)$</td>
<td>0.08</td>
<td>73.455</td>
<td>0.163</td>
<td>73.618</td>
</tr>
</tbody>
</table>

- Similar observations can be made.
- Hybrid schemes perform better than anonymous or differentiated pricing schemes.
Summary

Contribution:

- Explored a new class of tolling schemes that charge different amount of toll for users with different origins, destinations, or paths.
- Developed an approach for modeling location privacy of travelers.
- Proposed an incentive program that allows the tolling agency to take advantage of the potentials of differentiated pricing without doing harm to privacy rights of travelers.

Conclusion:

- Differentiated pricing shows great promise in optimizing system performance.
- Differentiated pricing may not be appealing for everyone.
- Distribution of value of privacy has a significant effect on the acceptability of differentiated schemes.
- Incentive program may create a win-win situation for all travelers.
Summary

Contribution:

- Explored a new class of tolling schemes that charge different amount of toll for users with different origins, destinations, or paths.
- Developed an approach for modeling location privacy of travelers
- Proposed an incentive program that allows the tolling agency to take advantage of the potentials of differentiated pricing without doing harm to privacy rights of travelers.

Conclusion:

- Differentiated pricing shows great promise in optimizing system performance
- Differentiated pricing may not be appealing for everyone
- Distribution of value of privacy has a significant effect on the acceptability of differentiated schemes
- Incentive program may create a win-win situation for all travelers
Questions? yafeng@ce.ufl.edu