

On the Estimation of Temporal Mileage Rates

R. Eddie Wilson

Jillian Anable (Aberdeen), Sally Cairns (TRL/UCL), Tim Chatterton (UWE),
Simon Notley (TRL), John Lees-Miller (Bristol)

Faculty of Engineering
University of Bristol

July 17, 2013

UK MOT (Ministry of Transport) test

VT20 MOT Test Certificate

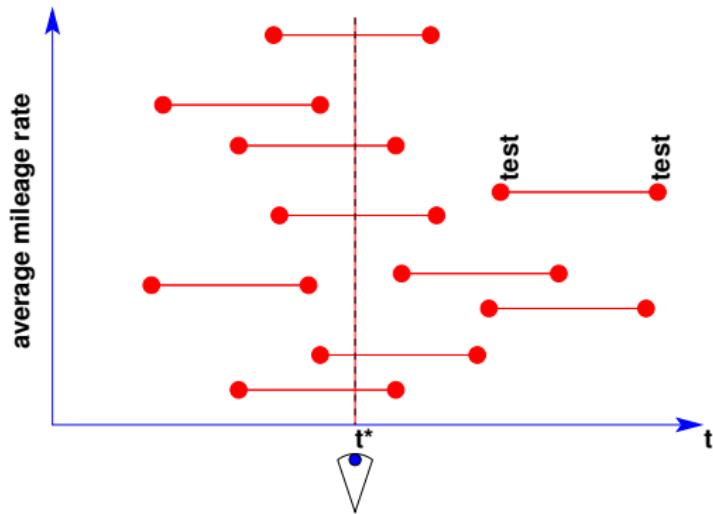
VOSA
Vehicle & Operator Services Agency

This certificate has been issued according to the conditions and notes on the back of this certificate.

Note: If you have doubts as to whether this certificate is valid, please use the service described in note 3 overleaf to check.

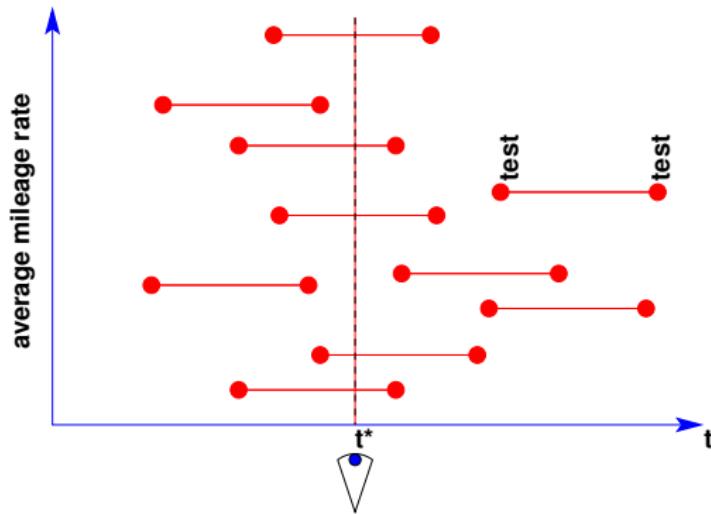
MOT test number	Make	Odometer reading
761710136293	VAUXHALL	105420 Miles
Registration mark	Model	Test class
T20JUNP	ASTRA	IV
Vehicle identification or chassis number	Colour	Approximate year of first use
W0D070F35X8091395	WHITE	1999
Expiry date	Issue date/time	Fuel type
AUGUST 25th 2007 (ZERO SEVEN)	AUGUST 18th 2006 (ZERO SIX) 13:30	Petrol
Authentication number		
 084907914489318556410227		
For all vehicles with more than 8 passenger seats		
Seat belt installation checked this test		
N/A		
Number of seat belts fitted at time of installation check		
N/A		
Previous installation check date		
N/A		
Issue's name in CAPITALS		
D. S. BRYANT		
Signature of issuee		
Warning: A test certificate is not evidence that the vehicle is in a satisfactory condition.		
Check carefully that the above details are correct.		
Do not accept a certificate which has been altered.		
Reg Mark	T20JUNP	Inspection Authority
Make	VAUXHALL	
VTS Number	80572	HANWAN MOTOR COMPANY 126 BRYANTS HILL ST GEORGE BRISTOL BS5 8RJ
MOT Expiry	AUGUST 25th 2007 (ZERO SEVEN)	Printed on

- ▶ MOT: the UK's annual safety inspection for all road vehicles older than 3 years
- ▶ Since 2005: the results have been captured and stored digitally
- ▶ Since November 2010 — the DfT has published this data online - spanning back to 2005.
- ▶ Key interest: the *odometer reading* recorded at each test.


Basic analysis object: *intervals* and their attributes

- Re-arrange blocks of same-vehicle data into consecutive pairs of tests:

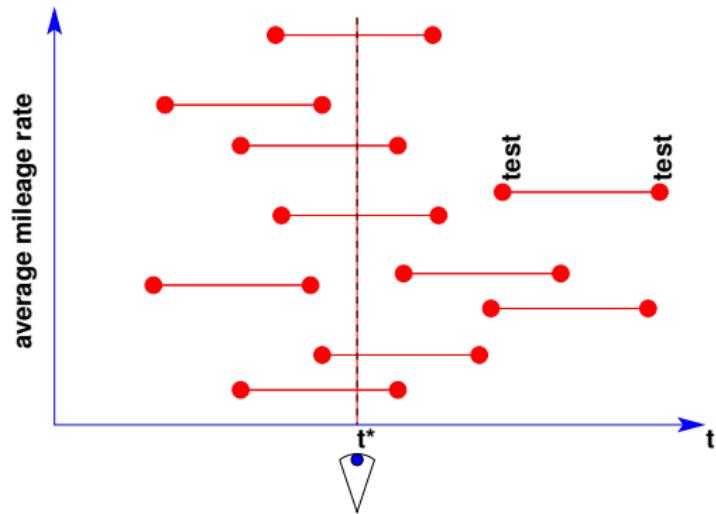
Interval	First test			Second test		
	date t_1	miles x_1	place ₁	date t_2	miles x_2	place ₂
1	2005-08-26	99777	BS	2006-08-18	105420	BS
2	2006-08-18	105420	BS	2007-08-13	113709	BS
3	2007-08-13	113709	BS	2008-08-11	123259	BS
4	2008-08-11	123259	BS	2008-08-11	123259	BS
5	2008-08-11	123259	BS	2009-08-05	132299	BS


- To which can be linked vehicle-specific attributes:
VAUXHALL, ASTRA LS 8V, WHITE, P (fuel), 1598 (cc), 1999 (year)
- (Eg) during *interval 3* — I drove at an average rate of $(123259 - 113709)/364 = 26.24$ miles per day, but we don't know how my mileage was *distributed* during that period.
- These mileage rates are (more or less) complete across the vehicle population — even after cleaning.

Population level statistics: *straddling rate* $\bar{r}(t)$

- ▶ Select all N intervals that *straddle* a given *observation date* t^*
- ▶ Each interval yields an average (per vehicle) rate r_i .

Population level statistics: *straddling rate* $\bar{r}(t)$



- ▶ Straddling rate $\bar{r}(t^*)$ is then defined by the **average average**

$$\bar{r}(t^*) = \frac{1}{N} \sum_{i=1}^N r_i.$$

- ▶ Select all N intervals that *straddle* a given *observation date* t^*
- ▶ Each interval yields an average (per vehicle) rate r_i .

Population level statistics: *straddling rate* $\bar{r}(t)$

- ▶ Select all N intervals that *straddle* a given *observation date* t^*
- ▶ Each interval yields an average (per vehicle) rate r_i .

- ▶ *Straddling rate* $\bar{r}(t^*)$ is then defined by the **average average**

$$\bar{r}(t^*) = \frac{1}{N} \sum_{i=1}^N r_i.$$

- ▶ It is fine for annual statistics: choose $t^* = 1/7/2007, 1/7/2008, 1/7/2009$ etc.
- ▶ But $\bar{r}(t^*)$ actually incorporates miles driven over the two year span $t^* - 1 \leq t < t^* + 1$.

Central Question for this Paper

Recall that I cannot possibly say anything about an individual's mileage on finer time scales than one year.

But can I derive something about population level mileage over shorter time scales — eg a month?

Central Question for this Paper

Recall that I cannot possibly say anything about an individual's mileage on finer time scales than one year.

But can I derive something about population level mileage over shorter time scales — eg a month?

Possible application: detect the sharp drop in driving in Autumn 2008 following Lehman brothers collapse.

Basic postulate: the population *spot rate* $\phi(t)$

- ▶ Suppose there is a population-level *spot rate* $\phi(t)$ that modulates *all* vehicles' mileage (alt. restrict to a population segment).

Basic postulate: the population *spot rate* $\phi(t)$

- ▶ Suppose there is a population-level *spot rate* $\phi(t)$ that modulates *all* vehicles' mileage (alt. restrict to a population segment).
- ▶ Then each vehicle i has an individual spot rate $\phi_i(t)$ with

$$\phi_i(t) = c_i \phi(t) + \text{noise}.$$

Here $c_i = \text{const.}$; $\langle c_i \rangle = 1$; and $\langle \text{noise} \rangle = 0$, so that $\phi = \langle \phi_i \rangle$.

Basic postulate: the population *spot rate* $\phi(t)$

- ▶ Suppose there is a population-level *spot rate* $\phi(t)$ that modulates *all* vehicles' mileage (alt. restrict to a population segment).
- ▶ Then each vehicle i has an individual spot rate $\phi_i(t)$ with

$$\phi_i(t) = c_i \phi(t) + \text{noise}.$$

Here $c_i = \text{const.}$; $\langle c_i \rangle = 1$; and $\langle \text{noise} \rangle = 0$, so that $\phi = \langle \phi_i \rangle$.

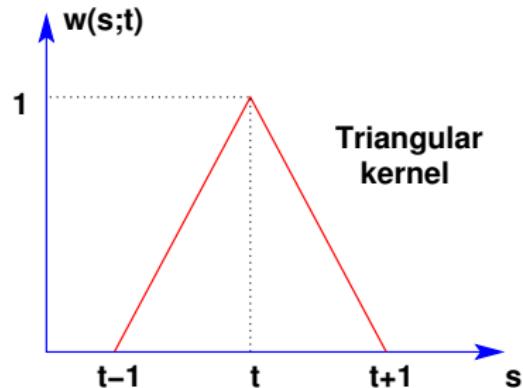
- ▶ Let $\psi_i(\tau)$ denote miles driven by i between tests at times $\tau - 1/2$ and $\tau + 1/2$. Then

$$\psi_i(\tau) = \int_{\tau-1/2}^{\tau+1/2} (c_i \phi(s) + \text{noise}) \, ds, \quad = c_i \int_{\tau-1/2}^{\tau+1/2} \phi(s) \, ds.$$

From the *spot rate* to the *straddling rate*

- ▶ Thus by averaging over tests that straddle t :

$$\bar{r}(t) = \int_{t-1/2}^{t+1/2} \langle \psi_i(\tau) \rangle_i \, d\tau = \int_{t-1/2}^{t+1/2} \langle c_i \rangle \int_{\tau-1/2}^{\tau+1/2} \phi(s) \, ds \, d\tau.$$


From the *spot rate* to the *straddling rate*

- ▶ Thus by averaging over tests that straddle t :

$$\bar{r}(t) = \int_{t-1/2}^{t+1/2} \langle \psi_i(\tau) \rangle_i \, d\tau = \int_{t-1/2}^{t+1/2} \langle c_i \rangle \int_{\tau-1/2}^{\tau+1/2} \phi(s) \, ds \, d\tau.$$

- ▶ Simplify integral by $\langle c_i \rangle = 1$ and reverse the order of integration

$$\bar{r}(t) = \int_{t-1}^{t+1} w(s; t) \phi(s) \, ds,$$

- ▶ Thus $\phi(t)$ leads to $\bar{r}(t)$.
But we want to derive $\phi(t)$ from $\bar{r}(t)$ (which is derivable from data).

From the *straddling rate* to the *spot rate*

- ▶ See paper for a whole bunch of Mathematics!!! - upshot:

$$\bar{r}''(t) = \phi(t+1) - 2\phi(t) + \phi(t-1).$$

From the *straddling rate* to the *spot rate*

- ▶ See paper for a whole bunch of Mathematics!!! - upshot:

$$\bar{r}''(t) = \phi(t+1) - 2\phi(t) + \phi(t-1).$$

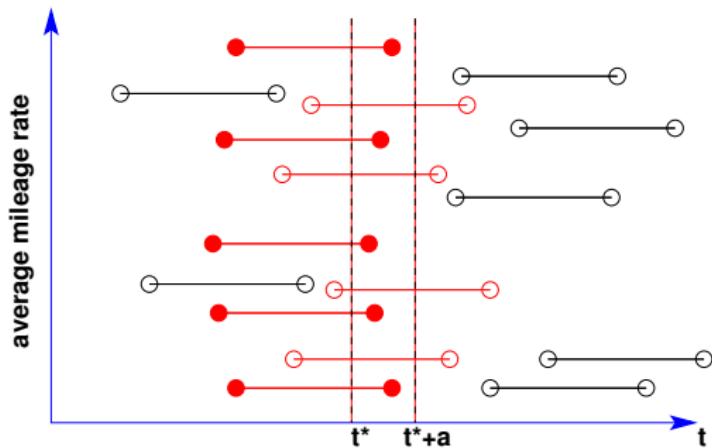
- ▶ Isolate $\phi(t+1)$ to derive a time-stepping scheme to evolve $\phi(t)$, with a time-step Δt ($= 1$ month, say)

From the *straddling rate* to the *spot rate*

- ▶ See paper for a whole bunch of Mathematics!!! - upshot:

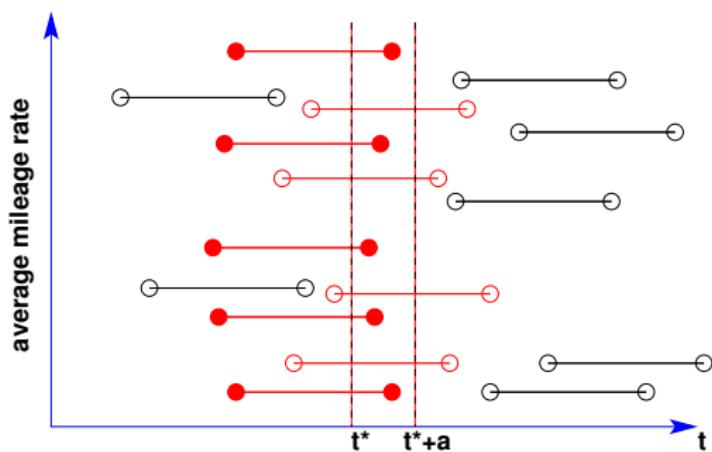
$$\bar{r}''(t) = \phi(t+1) - 2\phi(t) + \phi(t-1).$$

- ▶ Isolate $\phi(t+1)$ to derive a time-stepping scheme to evolve $\phi(t)$, with a time-step Δt ($= 1$ month, say)
- ▶ Compute $\bar{r}(t)$ from data at a mesh of points t_i , and estimate $\bar{r}''(t)$ by the divided difference — a natural step size is Δt .
 - ▶ in practice: $\bar{r}(t)$ is noisy, so the difference is applied to a smoothing least squares fit spline.


From the *straddling rate* to the *spot rate*

- ▶ See paper for a whole bunch of Mathematics!!! - upshot:

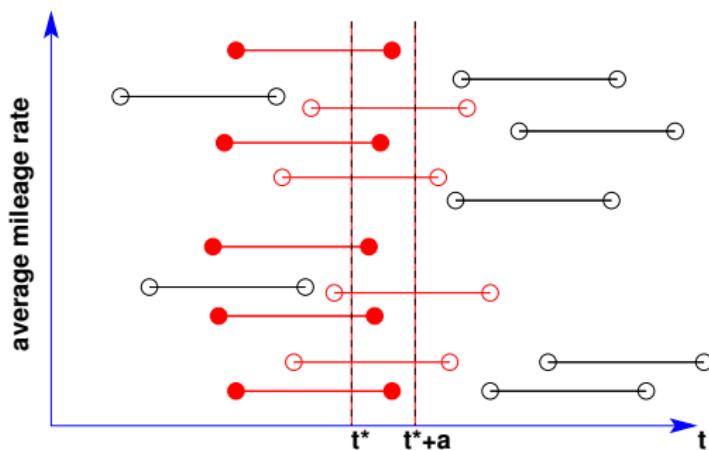
$$\bar{r}''(t) = \phi(t+1) - 2\phi(t) + \phi(t-1).$$


- ▶ Isolate $\phi(t+1)$ to derive a time-stepping scheme to evolve $\phi(t)$, with a time-step Δt ($= 1$ month, say)
- ▶ Compute $\bar{r}(t)$ from data at a mesh of points t_i , and estimate $\bar{r}''(t)$ by the divided difference — a natural step size is Δt .
 - ▶ in practice: $\bar{r}(t)$ is noisy, so the difference is applied to a smoothing least squares fit spline.
- ▶ Unfortunately: 2 years of initial data for $\phi(t)$ are required — at the fine scale resolution Δt .

Refinement of the *straddling rate* idea

- ▶ Select only the intervals that straddle t^* and with right hand ends before $t^* + \alpha$, with $\alpha \leq 1$ year.
- ▶ Call resulting average average straddle rate $\bar{r}_\alpha(t)$

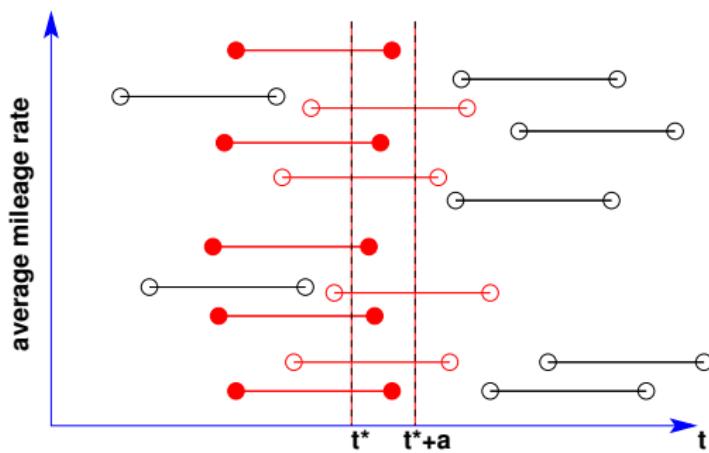
Refinement of the *straddling rate* idea



- ▶ Crank the handle to give:

$$\bar{r}_\alpha''(t) = \frac{1}{\alpha} [\phi(t + \alpha) - \phi(t)] - \frac{1}{\alpha} [\phi(t - 1 + \alpha) - \phi(t - 1)]$$

- ▶ Select only the intervals that straddle t^* and with right hand ends before $t^* + \alpha$, with $\alpha \leq 1$ year.
- ▶ Call resulting average average straddle rate $\bar{r}_\alpha(t)$

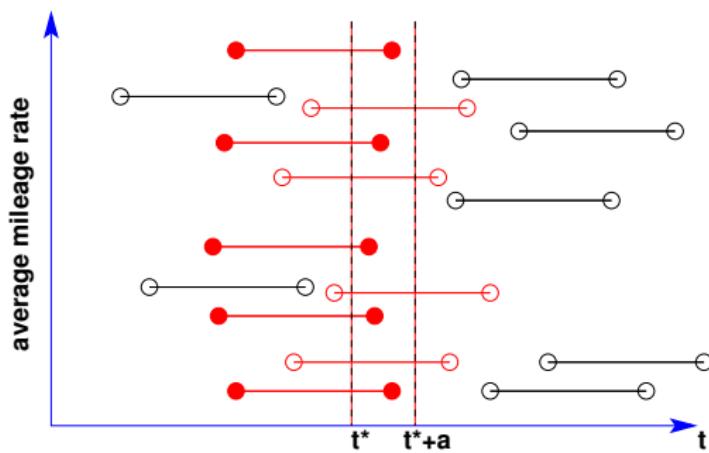

Refinement of the *straddling rate* idea

- ▶ Crank the handle to give:
$$\bar{r}_\alpha''(t) = \frac{1}{\alpha} [\phi(t + \alpha) - \phi(t)] - \frac{1}{\alpha} [\phi(t - 1 + \alpha) - \phi(t - 1)]$$
- ▶ Gives time-stepping scheme: but only $1 + \alpha$ years of initial data required.

- ▶ Select only the intervals that straddle t^* and with right hand ends before $t^* + \alpha$, with $\alpha \leq 1$ year.
- ▶ Call resulting average average straddle rate $\bar{r}_\alpha(t)$

Refinement of the *straddling rate* idea

- ▶ Select only the intervals that straddle t^* and with right hand ends before $t^* + \alpha$, with $\alpha \leq 1$ year.
- ▶ Call resulting average average straddle rate $\bar{r}_\alpha(t)$

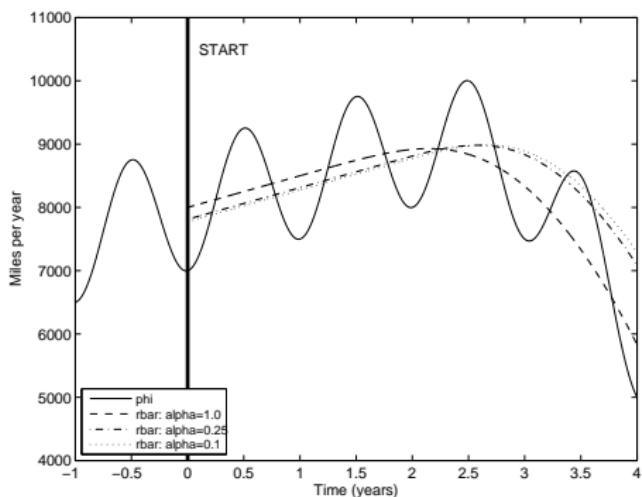

- ▶ Crank the handle to give:

$$\bar{r}_\alpha''(t) = \frac{1}{\alpha} [\phi(t + \alpha) - \phi(t)] - \frac{1}{\alpha} [\phi(t - 1 + \alpha) - \phi(t - 1)]$$

- ▶ Gives time-stepping scheme: but only $1 + \alpha$ years of initial data required.

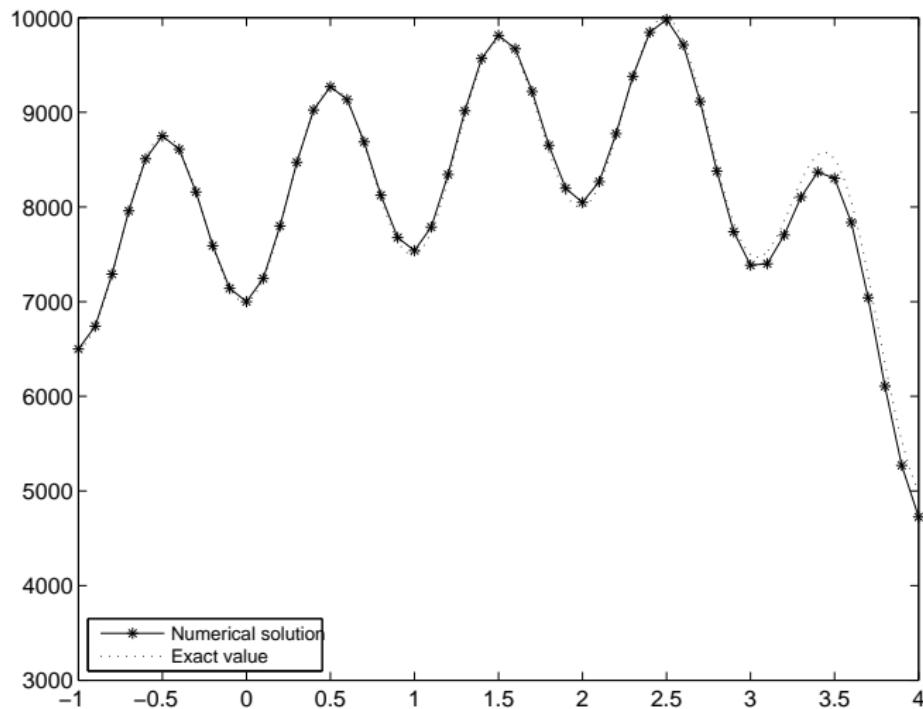
- ▶ So interest is in $\alpha \rightarrow 0$, which gives $\bar{r}_\alpha'(t) \simeq \phi'(t) - \phi'(t - 1)$ (natural meaning)

Refinement of the *straddling rate* idea

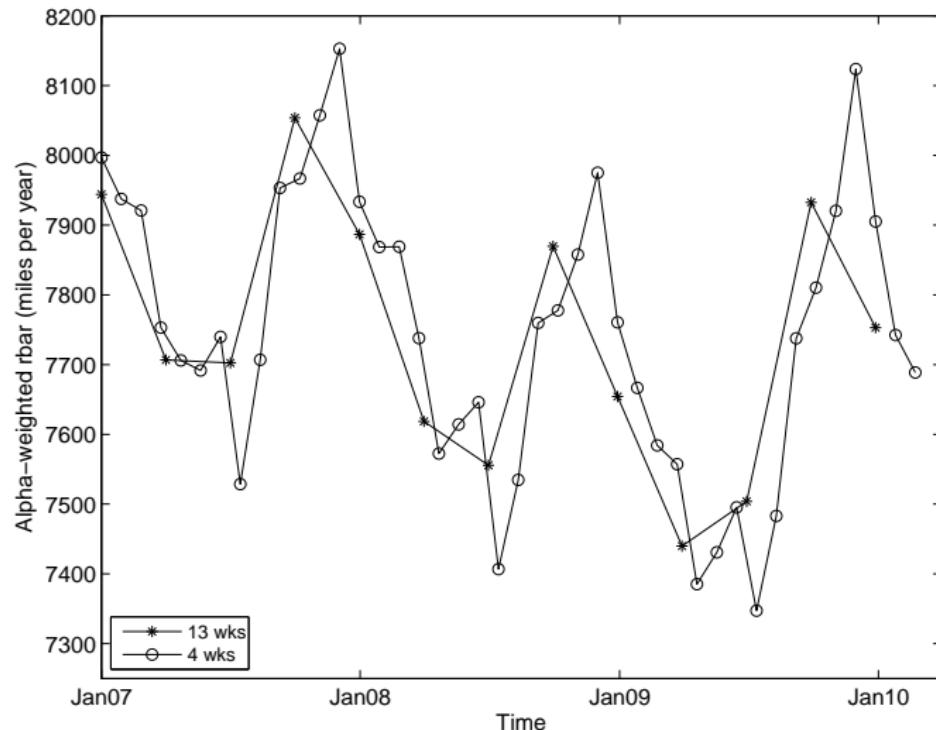


- ▶ Select only the intervals that straddle t^* and with right hand ends before $t^* + \alpha$, with $\alpha \leq 1$ year.
- ▶ Call resulting average average straddle rate $\bar{r}_\alpha(t)$

- ▶ Crank the handle to give:
$$\bar{r}_\alpha''(t) = \frac{1}{\alpha} [\phi(t + \alpha) - \phi(t)] - \frac{1}{\alpha} [\phi(t - 1 + \alpha) - \phi(t - 1)]$$
- ▶ Gives time-stepping scheme: but only $1 + \alpha$ years of initial data required.
- ▶ So interest is in $\alpha \rightarrow 0$, which gives
$$\bar{r}_\alpha'(t) \simeq \phi'(t) - \phi'(t - 1)$$
(natural meaning)
- ▶ $\alpha \rightarrow 0$ means fewer and fewer intervals, means noisy $\bar{r}_\alpha(t)$


Synthetic data set-up

- ▶ Choose *spot rate*
$$\phi(t) = 8000 + 500t - 1000 \cos 2\pi t - 1000 [t - 2]_+ (t - 2)^2,$$
- ▶ 10^6 vehicles with tests 1 year apart, test dates uniformly distributed through calendar year
- ▶ Vehicle i daily mileage drawn from a distribution modulated by $\phi(t)$ and (random) c_i .
- ▶ Odometer readings on test dates are synthesised by adding individual vehicle daily totals


- ▶ Periodic component in spot rate $\phi(t)$ is suppressed in straddling rates $\bar{r}_\alpha(t)$

Results with synthetic data: $\alpha = \Delta t = 0.1$ years

- Reconstructed $\phi(t)$ almost indistinguishable from ground truth.

Straddling rates $\bar{r}_\alpha(t)$ for real-world data

- ▶ Seasonal component shouldn't be there: underlying assumptions of the theory are broken

Implicit assumptions in the theory...

A1 We assume that tests (odometer readings) are exactly one year apart.

Implicit assumptions in the theory...

A1 We assume that tests (odometer readings) are exactly one year apart.

- ▶ OKish — theory can be generalised.

Implicit assumptions in the theory...

- A1** We assume that tests (odometer readings) are exactly one year apart.
 - ▶ OKish — theory can be generalised.

- A2** We assume that tests occur at same frequency on average throughout year.

Implicit assumptions in the theory...

A1 We assume that tests (odometer readings) are exactly one year apart.

- ▶ OKish — theory can be generalised.

A2 We assume that tests occur at same frequency on average throughout year.

- ▶ Not true — but easy to fix theory.

Implicit assumptions in the theory...

A1 We assume that tests (odometer readings) are exactly one year apart.

- ▶ OKish — theory can be generalised.

A2 We assume that tests occur at same frequency on average throughout year.

- ▶ Not true — but easy to fix theory.

A3 We assume that a vehicle's mileage rate is independent of the time of year of at which it is tested (and its odometer is read).

Implicit assumptions in the theory...

A1 We assume that tests (odometer readings) are exactly one year apart.

- ▶ OKish — theory can be generalised.

A2 We assume that tests occur at same frequency on average throughout year.

- ▶ Not true — but easy to fix theory.

A3 We assume that a vehicle's mileage rate is independent of the time of year of at which it is tested (and its odometer is read).

- ▶ Completely wrong. And very hard to fix.

On **A3**: fails because a pattern in new vehicle registrations throughout the year (in the UK).

Conclusions and Further Work

- ▶ Methods developed which extract population-level *spot rate* mileage from widely spaced individual vehicle odometer readings. Success with synthetic data.

Conclusions and Further Work

- ▶ Methods developed which extract population-level *spot rate* mileage from widely spaced individual vehicle odometer readings. Success with synthetic data.
- ▶ UK MOT data set: some fixes/patches to theory are needed.

Conclusions and Further Work

- ▶ Methods developed which extract population-level *spot rate* mileage from widely spaced individual vehicle odometer readings. Success with synthetic data.
- ▶ UK MOT data set: some fixes/patches to theory are needed.
- ▶ Please contact me if you know of other datasets (international) in which odometer readings are systematically collected.
- ▶ These methods have the potential to complement / replace existing survey-based / link-flow techniques for estimating population-level mileage.