A hybrid implementation mechanism of tradable network permits system:

An auction mechanism with day-to-day capacity control

Kentaro Wada & Takashi Akamatsu
Graduate School of Information Sciences, Tohoku University

ISTTT20, July 18, 2013
Introduction

- Congestion pricing (price-based regulation)
 - working effectively when a road manager can calculate an optimal toll level
 - needing **accurate** and **detailed demand information**
 - e.g., OD demands, VOT, desired arrival/departure time

- **Asymmetric information**
 - between the manager and road users
 - very difficult to obtain such private information
 - distorting toll levels
 - resulting in economic losses
What is tradable network permits scheme?

- ** Tradable Network Permits (TNP)** [Akamatsu et al. (06, 07)]
 - a right that allows a permit holder to pass through specific bottleneck during pre-specified time period
 - quantity-based regulation
 e.g., highway booking

- **Trading market** for network permits
 - time-dependent
 - freedom of permit choice
 - Allocation and prices are determined through the markets.
Why is the TNP scheme needed?

- **No queuing congestion**
 - # of permits of each link ≤ bottleneck capacity

- **No detailed information on user demand**
 - manager only needs to know bottleneck capacity.
 - cf. congestion pricing (or price-based regulation)

- **Efficiency in general networks** [Akamatsu, (07)]
 - equilibrium resource allocation pattern
 - = Dynamic System Optimal (DSO) assignment
 - assumption: trading markets are perfectly competitive,
 i.e., trading processes were treated as a black box.
How to implement the TNP scheme?

- Markets do what they are supposed to do, however, **only if they are well structured.** [McMillan (02)]
 - preventing **manipulating** prices
 - achieving an efficient allocation

- Auction mechanism for a bottleneck [Wada & Akamatsu (10)]
 - Vickrey-Clarke-Groves (VCG) mechanism
 - **strategy-proof** (i.e., truthful bidding is a dominant strategy)
 - **Permits allocation pattern is efficient.**

- General networks
 - A naïve formulation of the problem leads to **NP-hardness** owing to the complex relationship between link and path.
Purpose of the study

- A novel auction mechanism to implement TNP scheme for general networks
 - enabling each user to purchase the preferred bundle of permits (path)
 - achieving a DSO allocation of network permits in a computationally efficient manner

- Approach
 - evolutionary (day-to-day) approach
 - a path-based auction with day-to-day capacity control
 - obviating path enumeration by introducing a column generation procedure
Tradable permits for managing traffic congestion

- Quantity-based regulation + market institution
 - possibilities of using tradable permits for managing congestion [Verhoef et al., (97)]
 - none describes **time-dependent tradable permits** for eliminating **bottleneck congestion**.

- Tradable travel credit scheme [Yang and Wang (11)]
 - is superficially similar to but **fundamentally different** from tradable network permits scheme
 - is not a quantity-based regulation for **directly** reducing congestion but rather a **redistribution scheme of income**
Setting

- A discrete time DTA on general networks with multiple Origin-Destination (OD) pairs
 - point (or physical) queue model
 - \(\mu_a \) - bottleneck capacity = # of permits of link \(a \)
 - no queuing congestion

- Behavior assumption for atomic road user
 - at most single trip per day between an OD
 - utility max.: choice rule of path and destination arrival time
 - must purchase a bundle of permits corresponding to a path
User valuation and utility

- User i’s valuation for path r and destination arrival time t
 - private information
 - including constant travel time
 \[v_{i,r}(t) = [v_i]_{r,t} \geq 0 \]

- Quasi-linear utility = valuation − permit purchase cost
 \[u_{i,r}(t) = v_{i,r}(t) - p_r(t) \]

- Allocation of bundles of permits (paths)
 \[f_{i,r}(t) = [f_i]_{r,t} \in \{0, 1\} \]
 \[\sum_{r,t} f_{i,r} \leq 1 \]
DSO allocation of network permits

- **Dynamic system optimal problem [DSO] (atomic user)**

\[
\max \{f_i\} \sum_i v_i \cdot f_i \quad \text{... social surplus}
\]

- subject to

\[
1 \cdot f_i \leq 1 \quad \forall i \quad \text{... at most single trip per day}
\]

\[
\sum_i x_i \leq \mu \quad \text{... link capacity constraint}
\]

\[
x_i = \Delta_i f_i \quad \forall i \quad \text{... relationship path and link allocation}
\]

- allocation of permits (Links): \(x_{i,a}(t) = [x_i]_{a,t} \in \{0, 1\} \)
- path-link incidence matrix: \(\Delta_i \)
Difficulties of solving the problem [DSO]

- **Incomplete information** on the objective function
 - **Users’ private valuations** are unknown

 ✓ Vickrey-Clarke-Groves (VCG) combinatorial auction
 - gives users an incentive to report their valuations truthfully
 - must solve [DSO] **exactly** in many times to calculate allocation and **individual payment** (i.e., marginal cost)

- [DSO] is integer multi-commodity flow problem
 - complex relationship between **link and path variables** on **individual allocations**
 - **NP-hard**: no polynomial time algorithm exists
Basic ideas of day-to-day auction mechanism

- Decomposition of [DSO] based on Benders’ method
 - master-P – adjusting # of bundles of permits (path capacity) on day-to-day basis
 - sub-P – assigning bundles (path capacity) to users

- Solve the sub-P by an auction mechanism
 - gives users an incentive to report their valuation truthfully
 - can obtain the efficient permit allocation with incomplete information

- Assumption: users try to maximize their current utilities, i.e., (myopic) best response dynamics
Reformulation of the problem [DSO]

- Introducing **non-individual** integer variables
 - F - aggregated path variables (path-capacities)
 - X - aggregated link variables
- Equivalent optimization problem to the problem [DSO]

\[
\max_{\{F_w\},\{f_i\}} \sum_i v_i \cdot f_i \quad \text{... social surplus}
\]

- subject to
 - \[1 \cdot f_i \leq 1 \quad \forall i \quad \text{... at most single trip per day}\]
 - \[\sum_i f_i \leq F_w \quad \forall w \quad \text{... Path capacity constraint for OD pair w}\]
 - $X \leq \mu \quad \text{... link capacity constraint}$
 - \[X = \sum_w \Delta_w F_w \quad \text{... relationship path and link allocation}\]
Reformulation of the problem [DSO]

- Introduce *non-individual* integer variables
 - \mathbf{F} - non-individual path variables (path-capacities)
 - \mathbf{X} - non-individual link variables

- Equivalent optimization problem to the problem [DSO]

$$\max_{\{F_w\},\{f_i\}} \sum_i \nu_i \cdot f_i$$

- subject to

 $1 \cdot f_i \leq 1 \quad \forall i$

 $\sum_i f_i \leq F_w \quad \forall w$

 $\mathbf{X} \leq \mu$

 $\mathbf{X} = \sum_w \Delta_w F_w$

all constrains for individual variables are represented by path variables.
Framework of the day-to-day auction mechanism

master-P: F
path capacity adjustment phase

sub-P: f_i
auction phase

sub-P: f_i
auction phase

sub-P: f_i
auction phase
Decomposition of the problem [DSO]

- **Sub-problem (assignment problem): auction phase**
 - assigning bundles to users for **fixed path capacities**
 - satisfying **totally unimodularity**, i.e., \(\text{LP} = \text{IP} \)

\[
\max_{\{F_w\}} \sum_w S_w(F_w) = \max_{\{f_i\}} \sum_i v_i \cdot f_i
\]

subject to

\[
X \leq \mu
\]

\[
X = \sum_w \Delta_w F_w
\]

subject to

\[
1 \cdot f_i \leq 1 \quad \forall i
\]

\[
\sum_i f_i \leq F_w
\]

unknown variables: individual path variables
Decomposition of the problem [DSO]

- Dual sub-problem: auction phase
 - providing information on prices/payoffs
 - π_i: user i’s payoff, p: bundles prices

\[
\max_{\{F_w\}} \sum_w S_w(F_w) = \min_{\{p_w\},\{\pi_i\}} \sum_i \pi_i + p_w \cdot F_w
\]
subject to
\[
\pi_i 1 \geq v_i - p_w \quad \forall i
\]

unknown variables: payoff / price variables

\[
X \leq \mu
\]

\[
X = \sum_w \Delta_w F_w
\]
Decomposition of the problem [DSO]

- **Master problem: path capacity adjusting phase**
 - adjusting path capacities based on **demand information**
 (payoffs and prices) of each day auction phase

\[
\max_{\{F_w\}} \sum_w S_w(F_w) = \min_\sigma \left[\sum_i \pi_i^0 + p_w^0 \cdot F_w \right]
\]

- subject to

\[
X \leq \mu \\
X = \sum_w \Delta_w F_w
\]

\(\sigma\): set of all extreme points of dual constraints

unknown variables: non-individual variables

- using relaxation: generating extreme points iteratively
- using heuristics: linear relaxation, box-step constraints
Procedure of day-to-day auction mechanism

Day 1

Master problem: Path capacity adjusting

Initial path capacity F^1

Subproblem: Auction

Dual: Price p^1, Payoff π^1

Primal: Allocation f^1

Day 2

Master problem: Path capacity adjusting

Path capacity F^2

Subproblem: Auction

Dual: Price p^2, Payoff π^2

Primal: Allocation f^2
Obtaining truthful users’ valuation

- **Ascending proxy auction** [Demange et al. (86), Parkes & Ungar (02)]
 - users report their valuations to proxy agents
 - agents bid most preferred items under the current prices
 - choosing the overdemanded set & raising prices in the set
 - **Individual rationality**: winners’ payoffs are non-negative
 - **strategy-proof**: honesty is a best strategy for users
 - **efficiency**: Pareto efficient allocation can be achieved

- Corresponding to the mathematical programming
 - the process of the auction is corresponding to the *primal-dual (Hungarian) algorithm* for solving the sub-problem
Properties of the day-to-day auction mechanism

- **Proposition 1 (Convergence property)**
 The day-to-day auction mechanism converges in a finite number of iterations.

- **Proposition 2 (Efficiency property)**
 The permits allocation pattern by the mechanism converges to the most efficient allocation when the number of users is large.

proof:
\[
\lim_{N \to \infty} \frac{S_L - S_I}{S_L} = 0
\]

- S_L : obj. fun. of linear relaxation of MP
- S_I : obj. fun. of integer MP
Introducing **column generation** procedure

1. Considering a **subset of paths** of [DSO]. For the fixed path set, executing the day-to-day auction mechanism.

2. After convergence, **each user generates** preferred path based on the previous day-to-day auction. Go to Step 1.

- Path generation is efficient because **the numerous # of users generate paths simultaneously**
Numerical example: convergence process

- Sioux Falls network with 528 OD pairs
- the total number of users is 90150

![Graph showing ratio of realized value of SS to the maximum value over time. The graph illustrates two phases: The path generation phase and The day-to-day auction phase. Additionally, there are annotations pointing out MP’s objective function value (upper bound) and Realized value of social surplus (sub-problem).]
Conclusion

- We proposed the day-to-day auction mechanism for implementing tradable network permits scheme for general networks.

- We showed that the mechanism has desirable properties: strategy-proof; finite convergence; Pareto efficiency (DSO).

- We extended the mechanism to obviate path enumeration by introducing a column generation procedure.
Thank you for your attention

My first baby (son) was born yesterday!!

wadaken@plan.civil.tohoku.ac.jp
References

References

Future works

- Applying the proposed mechanism to the management of other transportation networks
 - railway networks, freight networks, logistics networks etc.
 - Problem: a network manager aims to maximizes not the social surplus but his/her profit

- Tradable network permits under the second-best situation
 - Queuing congestion occurs at a link that is not controlled.
 - needing connect the tradable network permits scheme to a DTA problem.
imagine that ...

Each user’s car has “agent software”

Agent software

Agent

Bottleneck

General networks
Multi-agent system

Each agent chooses a path and arrival time using **local information only**

Agent software

Agent

General networks

Bottleneck
Each agent deals with the cumbersome procedure of trading the bottleneck permits.
Feasibilities for implementation

- Technical point of views
 - Procedures for network permits
 » Dedicated short range communication (DSRC) system (e.g., Electric toll collection (ETC))
 - Trading markets
 » Internet auction markets (inexpensive!!)

- Institutional point of views
 - Minimal legal restrictions is needed
Assigning schemes of network permits

- Market selling scheme (In this study)
 - The road manager **sells** all the bottleneck permits to users in the trading market

- Free distribution scheme
 - The road manager distributes all the permits to users **for free** according to methods that consider the **equity among users**, e.g., rotation system of license plate numbers

- Remark
 - In terms of the efficiency of resource allocation, the two schemes are essentially identical.
Tradable network permits with stochastic arrivals

- Some users arrive at a bottleneck late (or fast)

- Stochastic queuing congestion can be decreased when a number of permits for the link is less than the capacity
 - about 80% [Kasahara & Akamatsu (06)]