

A hybrid implementation mechanism of tradable network permits system:

An auction mechanism with day-to-day capacity control

Kentaro Wada & Takashi Akamatsu

Graduate School of Information Sciences, Tohoku University

ISTTT20, July 18, 2013

Introduction

- ❖ Congestion pricing (price-based regulation)
 - working effectively when a road manager can calculate an optimal toll level
 - needing **accurate and detailed demand information**
 - e.g., OD demands, VOT, desired arrival/departure time
- ❖ **Asymmetric information**
 - between the manager and road users
 - very difficult to obtain such private information
 - distorting toll levels
 - resulting in economic losses

What is tradable network permits scheme?

❖ **Tradable Network Permits (TNP)** [Akamatsu *et al.* (06, 07)]

- a right that allows a permit holder to pass through **specific bottleneck** during **pre-specified time period**
- quantity-based regulation
 - e.g., highway booking

❖ **Trading market** for network permits

- time-dependent
- freedom of permit choice
- **Allocation and prices** are determined through the markets.

Why is the TNP scheme needed?

- ❖ **No queuing congestion**
 - # of permits of each link \leq bottleneck capacity
- ❖ **No detailed information on user demand**
 - manager only needs to know bottleneck capacity.
cf. congestion pricing (or price-based regulation)
- ❖ **Efficiency in general networks** [Akamatsu, (07)]
 - equilibrium resource allocation pattern
 - = **Dynamic System Optimal (DSO) assignment**
 - assumption: **trading markets are perfectly competitive**,
i.e., trading processes were treated as a **black box**.

How to implement the TNP scheme?

- ❖ Markets do what they are supposed to do, however, **only if they are well structured.** [McMillan (02)]
 - preventing **manipulating** prices
 - achieving an efficient allocation
- ❖ Auction mechanism for a bottleneck [Wada & Akamatsu (10)]
 - Vickrey-Clarke-Groves (VCG) mechanism
 - **strategy-proof** (i.e., truthful bidding is a dominant strategy)
 - **Permits allocation pattern is efficient.**
- ❖ General networks
 - A naïve formulation of the problem leads to **NP-hardness** owing to the complex relationship between link and path.

Purpose of the study

- ❖ **A novel auction mechanism to implement TNP scheme for general networks**

- enabling each user to purchase the preferred bundle of permits (path)
- achieving a DSO allocation of network permits in a computationally efficient manner

- ❖ Approach

- evolutionary (day-to-day) approach
 - **a path-based auction with day-to-day capacity control**
- obviating path enumeration by introducing a column generation procedure

Tradable permits for managing traffic congestion

- ❖ Quantity-based regulation + market institution
 - possibilities of using tradable permits for managing congestion [Verhoef *et al.*, (97)]
 - ✓ none describes **time-dependent tradable permits** for eliminating **bottleneck congestion**.
- ❖ Tradable travel credit scheme [Yang and Wang (11)]
 - is superficially similar to but **fundamentally different** from tradable network permits scheme
 - is not a quantity-based regulation for **directly** reducing congestion but rather a **redistribution scheme of income**

Setting

- ❖ A discrete time DTA on general networks with multiple Origin-Destination (OD) pairs
 - point (or physical) queue model
 - μ_a - bottleneck capacity = # of permits of link a
 - **no queuing congestion**
- ❖ Behavior assumption for **atomic** road user
 - *at most* single trip per day between an OD
 - **utility max.:** choice rule of *path* and *destination arrival time*
 - must purchase a bundle of permits corresponding to a path

User valuation and utility

- ❖ User i 's valuation for path r and destination arrival time t
 - **private information**
 - including **constant** travel time

$$v_{i,r}(t) = [v_i]_{r,t} \geq 0$$

- ❖ Quasi-linear utility = valuation – permit purchase cost

$$u_{i,r}(t) = v_{i,r}(t) - p_r(t)$$

- ❖ Allocation of bundles of permits (**paths**)

$$f_{i,r}(t) = [f_i]_{r,t} \in \{0, 1\}$$

$$\sum_{r,t} f_{i,r} \leq 1$$

DSO allocation of network permits

❖ Dynamic system optimal problem [DSO] (atomic user)

$$\max_{\{f_i\}} \sum_i \mathbf{v}_i \cdot f_i \quad \dots \text{social surplus}$$

- subject to

$$1 \cdot f_i \leq 1 \quad \forall i \quad \dots \text{at most single trip per day}$$

$$\sum_i x_i \leq \mu \quad \dots \text{link capacity constraint}$$

$$x_i = \Delta_i f_i \quad \forall i \quad \dots \text{relationship path and link allocation}$$

- allocation of permits (**Links**): $x_{i,a}(t) = [x_i]_{a,t} \in \{0, 1\}$
- path-link incidence matrix: Δ_i

Difficulties of solving the problem [DSO]

- ❖ **Incomplete information** on the objective function
 - **Users' private valuations** are unknown
- ✓ Vickrey-Clarke-Groves (VCG) combinatorial auction
 - gives users an incentive to report their valuations truthfully
 - must solve [DSO] **exactly** in many times to calculate allocation and **individual payment (i.e., marginal cost)**
- ❖ [DSO] is integer multi-commodity flow problem
 - complex relationship between **link and path variables on individual allocations**
 - **NP-hard**: no polynomial time algorithm exists

Basic ideas of day-to-day auction mechanism

- ❖ Decomposition of [DSO] based on Benders' method
 - **master-P** – adjusting # of bundles of permits (**path capacity**) on day-to-day basis
 - **sub-P** – assigning bundles (path capacity) to users
- ❖ Solve the **sub-P** by an **auction mechanism**
 - gives users an incentive to report their valuation truthfully
 - can obtain the efficient permit allocation **with incomplete information**
 - **Assumption:** users try to maximize their **current utilities**, i.e., (myopic) best response dynamics

Reformulation of the problem [DSO]

- ❖ Introducing ***non-individual*** integer variables
 - F - aggregated path variables (***path-capacities***)
 - X - aggregated link variables
- ❖ Equivalent optimization problem to the problem [DSO]

$$\max_{\{F_w\}, \{f_i\}} \sum_i \mathbf{v}_i \cdot f_i \quad \dots \textit{social surplus}$$

- subject to

$$1 \cdot f_i \leq 1 \quad \forall i \quad \dots \textit{at most single trip per day}$$

$$\sum_i f_i \leq F_w \quad \forall w \quad \dots \textit{Path capacity constraint for OD pair } w$$

$$X \leq \mu \quad \dots \textit{link capacity constraint}$$

$$X = \sum_w \Delta_w F_w \quad \dots \textit{relationship path and link allocation}$$

Reformulation of the problem [DSO]

- ❖ Introduce *non-individual* integer variables
 - F - non-individual path variables (path-capacities)
 - X - non-individual link variables
- ❖ Equivalent optimization problem to the problem [DSO]

$$\max_{\{F_w\}, \{f_i\}} \sum_i \mathbf{v}_i \cdot f_i$$

- subject to

$$1 \cdot f_i \leq 1 \quad \forall i$$

all constraints for individual variables are represented by path variables.

$$\sum_i f_i \leq F_w \quad \forall w$$

$$X \leq \mu$$

$$X = \sum_w \Delta_w F_w$$

Framework of the day-to-day auction mechanism

Decomposition of the problem [DSO]

❖ Sub-problem (assignment problem): auction phase

- assigning bundles to users for **fixed path capacities**
- satisfying **totally unimodularity**, i.e., $\text{LP} = \text{IP}$

$$\max_{\{F_w\}} \sum_w S_w(F_w)$$

- subject to

$$X \leq \mu$$

$$X = \sum_w \Delta_w F_w$$

$$= \max_{\{f_i\}} \sum_i \mathbf{v}_i \cdot f_i$$

subject to

$$1 \cdot f_i \leq 1 \quad \forall i$$

$$\sum_i f_i \leq F_w$$

*unknown variables:
individual path variables*

Decomposition of the problem [DSO]

❖ Dual sub-problem: auction phase

- providing information on prices/payoffs
- π_i : user i 's payoff, \mathbf{p} : bundles prices

$$\max_{\{\mathbf{F}_w\}} \sum_w S_w(\mathbf{F}_w)$$

- subject to

$$\mathbf{X} \leq \mu$$

$$\mathbf{X} = \sum_w \Delta_w \mathbf{F}_w$$

$$= \min_{\{\mathbf{p}_w\}, \{\pi_i\}} \sum_i \pi_i + \mathbf{p}_w \cdot \mathbf{F}_w$$

- subject to

$$\pi_i \mathbf{1} \geq \mathbf{v}_i - \mathbf{p}_w \quad \forall i$$

*unknown variables:
payoff / price variables*

Decomposition of the problem [DSO]

❖ Master problem: path capacity adjusting phase

- adjusting path capacities based on **demand information** (payoffs and prices) of each day auction phase

$$\max_{\{F_w\}} \sum_w S_w(F_w) = \underline{\min_o [\sum_i \pi_i^o + p_w^o \cdot F_w]}$$

- subject to

*o: set of all extreme points
of dual constraints*

$$X \leq \mu$$

$$X = \sum_w \Delta_w F_w$$

*unknown variables:
non-individual variables*

- using relaxation: generating extreme points iteratively
- using heuristics: linear relaxation, box-step constraints

Procedure of day-to-day auction mechanism

Obtaining truthful users' valuation

- ❖ **Ascending proxy auction** [*Demange et al. (86), Parkes & Ungar (02)*]
 - users report their valuations to proxy agents
 - agents bid most preferred items under the current prices
 - choosing the overdemanded set & raising prices in the set
 - **Individual rationality**: winners' payoffs are non-negative
 - **strategy-proof**: honesty is a best strategy for users
 - **efficiency**: Pareto efficient allocation can be achieved
- ❖ Corresponding to the mathematical programming
 - the process of the auction is corresponding to the **primal-dual (Hungarian) algorithm** for solving the sub-problem

Properties of the day-to-day auction mechanism

- ❖ **Proposition 1 (Convergence property)**

*The day-to-day auction mechanism converges **in a finite number of iterations**.*

- ❖ **Proposition 2 (Efficiency property)**

*The permits allocation pattern by the mechanism converges to **the most efficient allocation** when the number of users is large.*

proof:

$$\lim_{N \rightarrow \infty} \frac{S_L - S_I}{S_L} = 0$$

S_L : obj. fun. of linear relaxation of MP

S_I : obj. fun. of integer MP

Extension: obviate path enumeration

- ❖ Introducing **column generation** procedure
 1. Considering a **subset of paths** of [DSO]. For the fixed path set, executing the day-to-day auction mechanism.
 2. After convergence, **each user generates** preferred path based on the previous day-to-day auction. Go to Step 1.
- Path generation is efficient because **the numerous # of users generate paths simultaneously**

Numerical example: convergence process

- Sioux Falls network with 528 OD pairs
- the total number of users is 90150

Conclusion

- ❖ We proposed the day-to-day auction mechanism for implementing tradable network permits scheme for general networks
- ❖ We showed that the mechanism has desirable properties: strategy-proof; finite convergence; Pareto efficiency (DSO).
- ❖ We extended the mechanism to obviate path enumeration by introducing a column generation procedure.

Thank you for your attention

My first baby (son) was born yesterday !!

wadaken@plan.civil.tohoku.ac.jp

References

- Akamatsu, T., Sato, S., Nguyen, L. X., 2006. Tradable time-of-day bottleneck permits for morning commuters. *JSCE Journal of Infrastructure Planning and Management* **62** (4), 605–620.
- Akamatsu, T., 2007a. A system of tradable bottleneck permits for general networks. *JSCE Journal of Infrastructure Planning and Management* **63** (3), 287–301.
- Akamatsu, T., 2007b. Tradable network permits: A new scheme for the most efficient use of network capacity. Working Paper, Tohoku University.
- Demange, G., Gale, D., Sotomayor, M., 1986. Multi-item auctions. *The Journal of Political Economy* **94** (4), 863–872.
- Parkes, D. C., Ungar, L. H., 2000. Preventing strategic manipulation in iterative auctions: Proxy agents and price-adjustment. In: *Proceedings of the 17th National Conference on Artificial Intelligence*. pp. 82–89.
- Verhoef, E., Nijkamp, P., Rietveld, P., 1997. Tradeable permits: their potential in the regulation of road transport externalities. *Environment and Planning B* **24** (4), 527–548.
- Wada, K., Akamatsu, T., 2010. An e-market mechanism for implementing tradable bottleneck permits. *JSCE Journal of Infrastructure Planning and Management* **66** (2), 160–177.

References

- Yang, H., Wang, X., 2011. Managing network mobility with tradable credits. *Transportation Research Part B* **45** (3), 580–594.

Future works

- ❖ Applying the proposed mechanism to the management of other transportation networks
 - railway networks, freight networks, logistics networks etc.
 - Problem: a network manager aims to maximizes not the social surplus but his/her profit
- ❖ Tradable network permits under the second-best situation
 - Queuing congestion occurs at a link that is not controlled.
 - needing connect the tradable network permits scheme to a DTA problem.

Unrealistic!?

- ❖ imagine that ...

Multi-agent system

Multi-agent system

Each agent deals with the cumbersome procedure of trading the bottleneck permits

Feasibilities for implementation

- ❖ Technical point of views
 - Procedures for network permits
 - » Dedicated short range communication (DSRC) system (e.g., Electric toll collection (ETC))
 - Trading markets
 - » Internet auction markets (inexpensive!!)
- ❖ Institutional point of views
 - Minimal legal restrictions is needed

Assigning schemes of network permits

- ❖ Market selling scheme (In this study)
 - The road manager **sells** all the bottleneck permits to users in the trading market
- ❖ Free distribution scheme
 - The road manager distributes all the permits to users **for free** according to methods that consider the **equity among users**, e.g., rotation system of license plate numbers
- ❖ Remark
 - In terms of the efficiency of resource allocation, the two schemes are essentially identical.

Tradable network permits with stochastic arrivals

- ❖ Some users arrive at a bottleneck late (or fast)

- Stochastic queuing congestion can be decreased when a number of permits for the link is less than the capacity
 - **about 80%** [Kasahara & Akamatsu (06)]