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Background
▸ Global research interests in Advanced Driver Assistance

Systems and Cooperative Systems

▸ Increase of Adaptive Cruise Control (ACC) systems
equipped vehicles on road

▸ ACC system automates the longitudinal driving tasks:

▸ Cruising mode: maintain free speed
▸ Following mode: maintain desired gap

▸ Induced changes in individual vehicular behaviour and
collective traffic flow operations
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Existing ACC contollers (or models)

▸ Widely-used Constant Time Gap policy, i.e. Helly
car-following model without time delay

▸ Overruled by drivers at highly non-stationary conditions
and congestions

▸ Difficult to incorporate cooperative driving concept with
Vehicle-Vehicle (V2V) communications

▸ Unable to fulfil multiple objectives, e.g. maximising
safety, efficiency and sustainability
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This contribution

▸ An optimal control framework for driver assistance and
cooperative systems

▸ An ACC controller with human-like behaviour

▸ A Cooperative ACC (C-ACC) controller that captures
vehicle-vehicle collaboration

▸ New insights into stability characteristics of the
controllers
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Control assumptions

▸ Controlled acceleration, i.e. automatic control
of throttle and brake pedal

▸ Information of other vehicles influencing
control decisions available

▸ No delay in the control loop

▸ Deterministic case
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Rolling horizon approach
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Cost minimisation in one control cycle

u∗ = arg min J(x, u∣x0)

J(x, u∣x0) = ∫

∞

t0

e−ητL(x, u)dτ

s.t.
ẋ = f (x,u),x0 = x(t0)

▸ x: system state; L: running cost

▸ η > 0: discount factor, cost discounted in the (uncertain)
future and decreases exponentially after a horizon 1/η

▸ u∗: optimal acceleration, can be found by Dynamic
Programming approach
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Controller design procedure under the
framework

1. Define system state and determine state
prediction model (i.e. system dynamics
equation)

2. Specify cost function under control objectives

3. Find optimal acceleration

4. Verify the controller performance
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Example 1: ACC controller
System state: x = (sn,∆vn, vn)′

 
sn

Δvn = vn-1 – vn

leader
ACC 

follower

vn, un vn-1 , un-1

 

State prediction model: system dynamics equation

ẋ = ( ∆vn,un−1 − un,un )
′
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ACC control objectives
▸ Maximise safety in following mode, by

penalising approaching leader
▸ Maximise travel efficiency, by penalising

deviation from desired speed or free speed
▸ Maximise driving comfort, by penalising large

acceleration/deceleration
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Optimal acceleration of ACC vehicle

u∗ACC =
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Satisfies necessary conditions for plausible car-following models!
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Example 2: Cooperative ACC (C-ACC)
▸ Two CACC follower exchange information (gap and

relative speed) via V2V communication

▸ Negotiate and coordinate their (car-following) behaviour
under a common objective

▸ System state x = (sn,∆vn, vn, sn+1,∆vn+1, vn+1)
′

▸ State prediction model:
ẋ = (∆vn,un−1 − un,un,∆vn+1,un − un+1,un+1)

′
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Δvn 

leaderCACC

follower 1

vn, un vn-1 , un-1

 
sn+1

Δvn+1
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follower 2
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V2V comm.
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C-ACC cost and acceleration
▸ Control objective: maximising safety, efficiency and

driving comfort for both followers

▸ Joint cost function: sum of costs for two followers

u∗C-ACC = u∗ACC
±

ACC acceleration
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Anlytical framework for stability analysis

▸ Consider a generalised acceleration function
u(s,∆v , v , sb,∆vb, vb), with sb,∆vb, vb denoting the
situation behind

▸ Find equilibrium gap-speed relation ve(se) by setting
u = 0 and ∆v = 0

▸ Insert small disturbances of gap and speed to a vehicle
at equilibrium

▸ Take derivatives of disturbance and get disturbance
dynamical equation (DDE)

▸ Solve the DDE and find the signs of the roots using
Fourier analysis
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String stability criteria

ACC controller:

v ′e(se)
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2

C-ACC controller:
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Neutral string staility line
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String stability of ACC platoon is enhanced with:

▸ larger safety cost weight, more anticipative driving style

▸ larger time gap, larger following distance

▸ smaller discount factor, longer prediction horizon
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Convective and absolute instability
If string instability prevails, in which direction the disturbances
propagate in the x-t plane: upstream, downstream or both?

Figure: (a) Convective upstream instability; (b) Absolute
instability (Treiber and Kesting, 2013).
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Stability diagram using Fourier transform
S: Stability; U: convective Upstream instability;
A: Absolute instability; D: convective Downstream instability
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Figure: (a) ACC controller; (b) C-ACC controller.

.

Wang, Treiber, Daamen, Hoogendoorn & van Arem ADAS model by optimal control 19/25



Introduction Control framework Example controllers Controller characteristics Conclusion and future research

Summary

▸ An optimal control framework for driver assistance and
cooperative systems

▸ An ACC controller with plausible car-following behaviour

▸ A C-ACC controller under collaborative driving concept

▸ Rigorous stability criteria for ACC and C-ACC can be
used as guidance for controller design and tuning

▸ The C-ACC controller produces significantly different
string instability property compared to the ACC
controller
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Future research

▸ Including delay and inaccuracy in the
framework

▸ Design cooperative vehicle controller to
improve stability

▸ Challenge to model-based traffic state
estimation, prediction and control methods in
Cooperative Systems
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Optimal control by cost minimisation

u∗ = arg min J(x, u∣x0)

J(x, u∣x0) = ∫

t0+T

t0

e−ητL(x, u)dτ+e−η(t0+T )φ(x(t0+T ))

s.t.
ẋ = f (x,u),x0 = x(t0)

▸ u∗: optimal controlled acceleration in [t0, t0 +T )

▸ x: local traffic system state

▸ L: running cost; φ: terminal cost

▸ η ≥ 0: discount factor, cost discounted in the (uncertain)
future and decreases exponentially after a horizon 1/η

Alternative solution approach for more general cost functions:
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Characteristic velocity of waves

▸ Group velocity (vg): signal waves propagates vg
▸ Phase velocity (vφ): center of the perturbation

waves propagate with vφ
▸ Signal velocity (cs+ and cs−): boundaries of

the instability region
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Calculation characteristic velocity

1. Partition initial perturbation U(x ,0) into linear waves with Dirac
delta function.

2. Perform Fourier transform from physical space U(x ,0) to Fourier
space U(k ,0). In Fourier space, all relevant perturbation modes
are the same and equals unity.

3. Perform an inverse Fourier transform from Fourier space to
physical space to get the complex perturbation amplitude Ũ(x , t).

4. Expand root λ around the wave number k0 with the maximum
growth rate with Taylor series.

5. Solve a well-defined Gaussian integral and take the real part to get
spatio-temporal evolution of initial perturbation U(x , t).

6. Find vg , vφ, cs+ and cs−.

An alternative method with Laplace transform in Ward and Wilson (2011).
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