

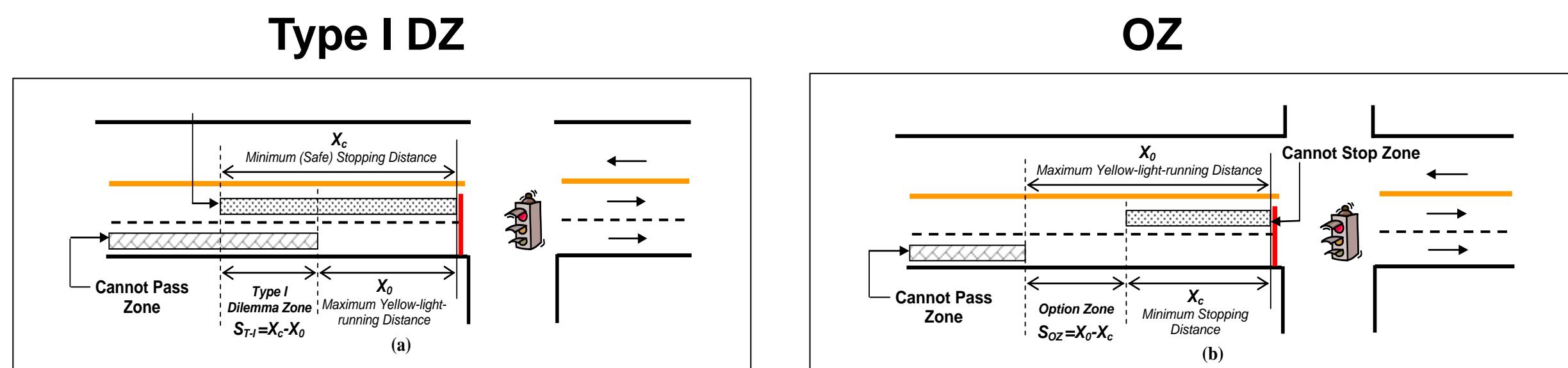
Modeling Dynamics of Dilemma Zones by Formulating Dynamical Contributing Factors with Video-observed Trajectory Data

Zhixia Li, Ph.D., Assistant Researcher, University of Wisconsin-Madison
Heng Wei, Ph.D., P.E., Associate Professor, University of Cincinnati

Introduction

Dynamics of Dilemma Zone

- Gazis et al. defined the dilemma zone (DZ) as the distance between the minimum safe stopping distance X_c and the maximum yellow-light-running distance X_0 .



- Type I DZ: $X_c > X_0$: hazardous; could be eliminated by a long enough yellow time.
- Option Zone (OZ): $X_0 > X_c$: drivers in OZ still experience indecisiveness, which contributes to crashes; longer when yellow time is longer.

$$X_c = V_0 \delta_2 + \frac{V_0^2}{2a_2} \quad X_0 = V_0 \tau - W - L + \frac{1}{2} a_1 (\tau - \delta_1)^2$$

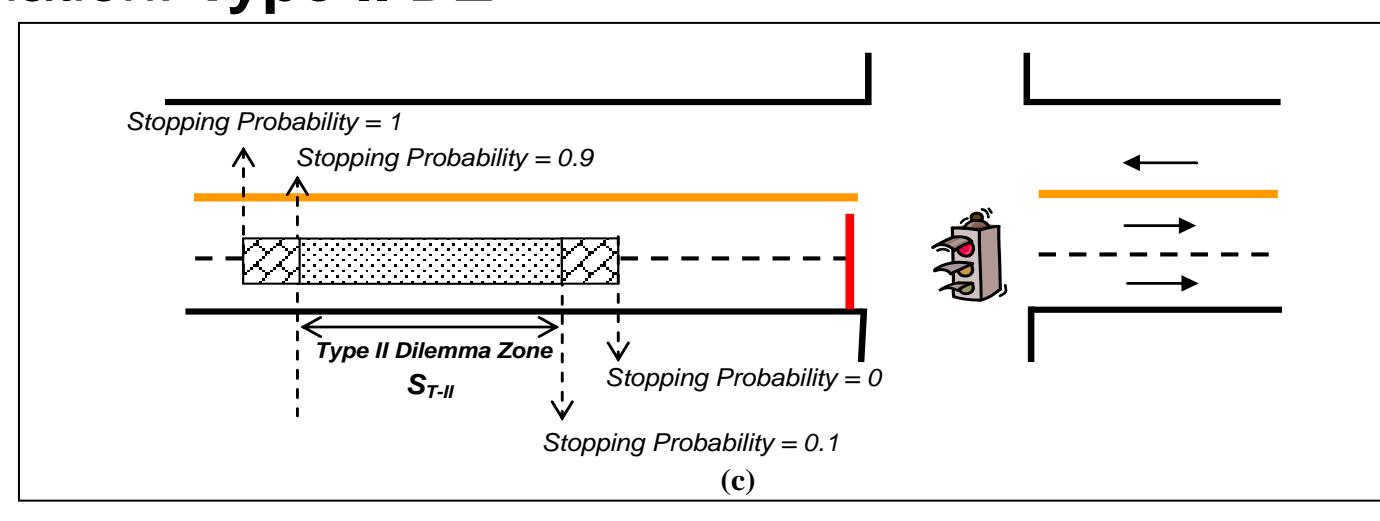
Where,

V_0 is vehicle's speed (ft/s); δ_1 is minimum perception-reaction time (PRT) for passing (s); δ_2 is minimum PRT for stop (s); a_1 is maximum acceleration rate for passing (ft/s²); a_2 is maximum deceleration rate for stop (ft/s²); τ is duration of yellow interval (s); W is intersection width (ft); and, L is vehicle length (ft).

- Dynamics of dilemma zone: reflected by **the dynamical characteristics of the driver-vehicle complex**; the dynamics have not yet been fully revealed and modeled.

Compromised Alternatives to Estimating Dilemma Zone

- Factors that are associated with the **dynamical characteristics of the driver-vehicle complex**: δ_1 , δ_2 , a_1 , and a_2 .
- In practice, there has been a lack of quantitative knowledge of the above four factors.
- Compromised way were used to estimate the dilemma zone:
 - Assumed constant values** for δ_1 , δ_2 , a_1 , and a_2 . (FHWA, ITE)
 - Constant values are not dynamic per se.
 - Probabilistic definition to facilitate estimation: **Type II DZ**
 - Stopping probability [0.1, 0.9];
 - Simple computation;
 - Not reflecting true DZ dynamics.



Research Objective

- Model the dilemma zone dynamics by formulating the dynamical contributing factors δ_1 , δ_2 , a_1 , and a_2 ;
- Update the exiting dilemma zone model to incorporate the dilemma zone dynamics;
- Validate and evaluate the accuracy of the dynamical dilemma zone model.

Tentative Dynamical Dilemma Zone Model

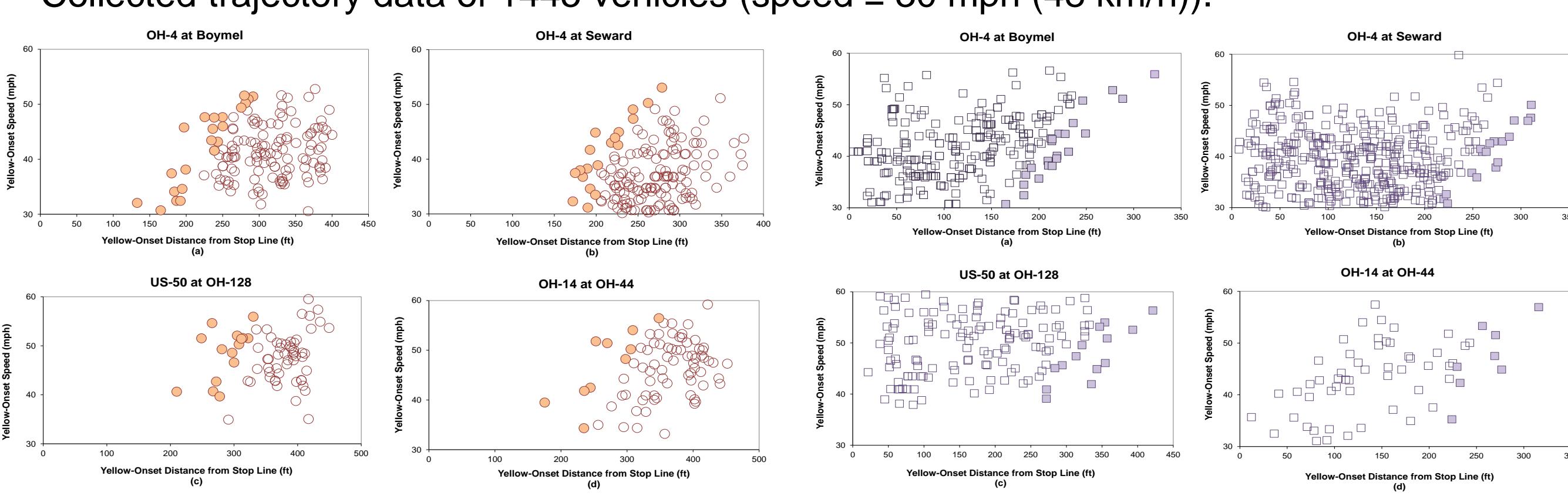
- The Dynamical model is based on the original GHM model, but assumes the dilemma zone to be **vehicle-specific** and **site-specific**. An individual vehicle has its own dilemma zone boundaries, which is determined by:
 - The individual vehicle's speed V_0 ;
 - The approach's 85th percentile speed V_{85th} ; and potentially,
 - The duration of the yellow interval τ .
- The dilemma zone contributing factors, δ_1 , δ_2 , a_1 , and a_2 , are assumed to be dynamical as functions of V_0 , V_{85th} , τ .

$$\delta_1 = f(V_0, V_{85th}, \tau) \quad a_1 = f(V_0, V_{85th}, \tau)$$

$$X_c = V_0 \delta_2 + \frac{V_0^2}{2a_2} \quad X_0 = V_0 \tau + \frac{1}{2} a_1 (\tau - \delta_1)^2 \quad \delta_2 = f(V_0, V_{85th}, \tau) \quad a_2 = f(V_0, V_{85th}, \tau)$$

Data Collection and Analysis Dataset Preparation

- Conducted at 4 high speed signalized intersections in Ohio, US with various V_{85th} and τ .
- Software program VEVID used to extract vehicle's yellow-onset speed, acceleration rate for passing or deceleration rate for stopping, and driver's PRT for stopping.
- Collected trajectory data of 1445 vehicles (speed ≥ 30 mph (48 km/h)).



Preparing Datasets for Modeling δ_1 , δ_2 , a_1 , and a_2

- Solid circles** represent vehicles with the shortest stopping distance at different speeds; their deceleration rate and PRT correspond to a_2 and δ_2 , respectively.
 - Number of samples in the dataset for modeling a_2 and δ_2 is 44 (from 3 study sites).
 - Dataset of 22 samples from the rest study site were reserved for validating the a_2 and δ_2 models.
- Solid squares** represent vehicles with the furthest yellow passing distance at different speeds; their acceleration rate and PRT correspond to a_1 and δ_1 , respectively.
 - As δ_1 is hard to be accurately collected, it is assumed that $\delta_1 = \delta_2$.
 - Number of samples in the dataset for modeling a_1 is 41 (from 3 study sites).
 - Dataset of 23 samples from the rest study site were reserved for validating the a_1 model.

Modeling the Dynamics

Modeling δ_2

Step 1: Identification of factors impacting δ_2

Based on results from the linear regression analyses, the yellow-onset speed (V_0) is the only statistically significant factor to impact δ_2 .

Linear Regression Analysis a, b		B	Std. Error	t	Sig. (p-value)	Candidate Regression Models a, b	R ²	F	Model Summary Sample Size	Sig. (p-value)	Parameter Estimates Constant Coefficient
Analysis 1		Constant	1.463	0.353	4.142	0.000					
		V_0 (mph)	-0.017	0.007	-2.619	0.012	Linear	0.138	6.745	44	0.013 1.637 -0.015
		V_{85th} (mph)	0.005	0.007	0.736	0.466	Logarithmic	0.154	7.642	44	0.008 3.554 -0.682
		Constant	1.610	0.524	3.072	0.004	Inverse	0.170*	8.626	44	0.005 0.274 30.392
		V_0 (mph)	-0.015	0.006	-2.548	0.015	Power	0.126	6.049	44	0.018 14.952 -0.734
		τ (s)	0.007	0.108	0.061	0.951	S	0.136	6.583	44	0.014 -0.274 32.263
						Exponential	0.116	5.527	44	0.023 1.918 -0.016	

a. Dependent Variable: δ_2 ; b. Sample Size: 44.

a. Dependent Variable: δ_2 ; b. Independent Variable: V_0 ; * indicates the highest R^2 .

Step 2: Formulation of δ_2

Based on the results from the model-fit test, inverse model is identified as the best-fit model.

$$\delta_2 = \delta_2 = f(V_0) = 0.274 + \frac{30.392}{V_0}$$

Modeling a_2

Step 1: Identification of factors impacting a_2

V_0 and V_{85th} are the factors that significantly impact a_2 , while τ is not.

Step 2: Formulation of a_2

$$a_2 \sim \exp(b_0 + \frac{b_1}{V_0}) \quad a_2 \sim b_2 + \frac{b_3}{V_{85th}} \quad a_2 = f(V_0, V_{85th}) = \exp(b_0 + \frac{b_1}{V_0} + b_2 + \frac{b_3}{V_{85th}}) \quad a_2(V_0, V_{85th}) = \exp(3.572 + \frac{-25.013}{V_0}) - 17.855 + \frac{480.558}{V_{85th}} \quad R^2 = 0.637$$

Modeling a_1

Step 1: Identification of factors impacting a_1

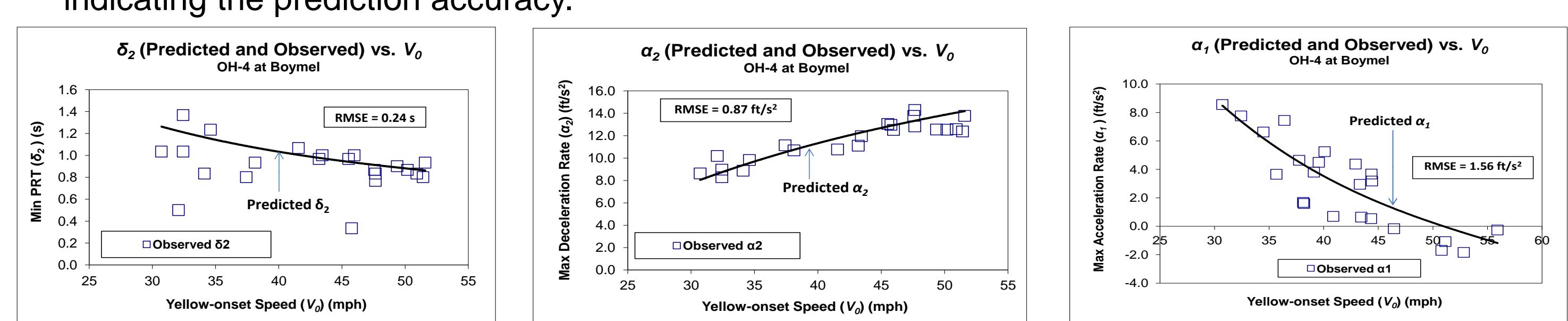
V_0 , V_{85th} , and τ are the factors that significantly impact a_1 . Considering that V_{85th} and τ are highly correlated as in practice τ is usually determined by V_{85th} , V_{85th} was selected as the second variable in the model of a_1 in addition to V_0 .

Step 2: Formulation of a_1

$$a_1 \sim b_0 + \frac{b_1}{V_0} \quad a_1 \sim b_2 \cdot V_{85th} + b_3 \quad a_1 = f(V_0, V_{85th}) = b_0 + \frac{b_1}{V_0} + b_2 \cdot V_{85th} \quad a_1(V_0, V_{85th}) = -23.513 + \frac{658.948}{V_0} + 0.223 \cdot V_{85th} \quad R^2 = 0.774$$

Validating the δ_2 , a_1 , and a_2 Models

- Independent datasets from the fourth study site were used in the validation.
- RMSEs between the predicted and observed values were computed as the performance measure indicating the prediction accuracy.



- Result: low to acceptable RMSEs were obtained, which validated the models.

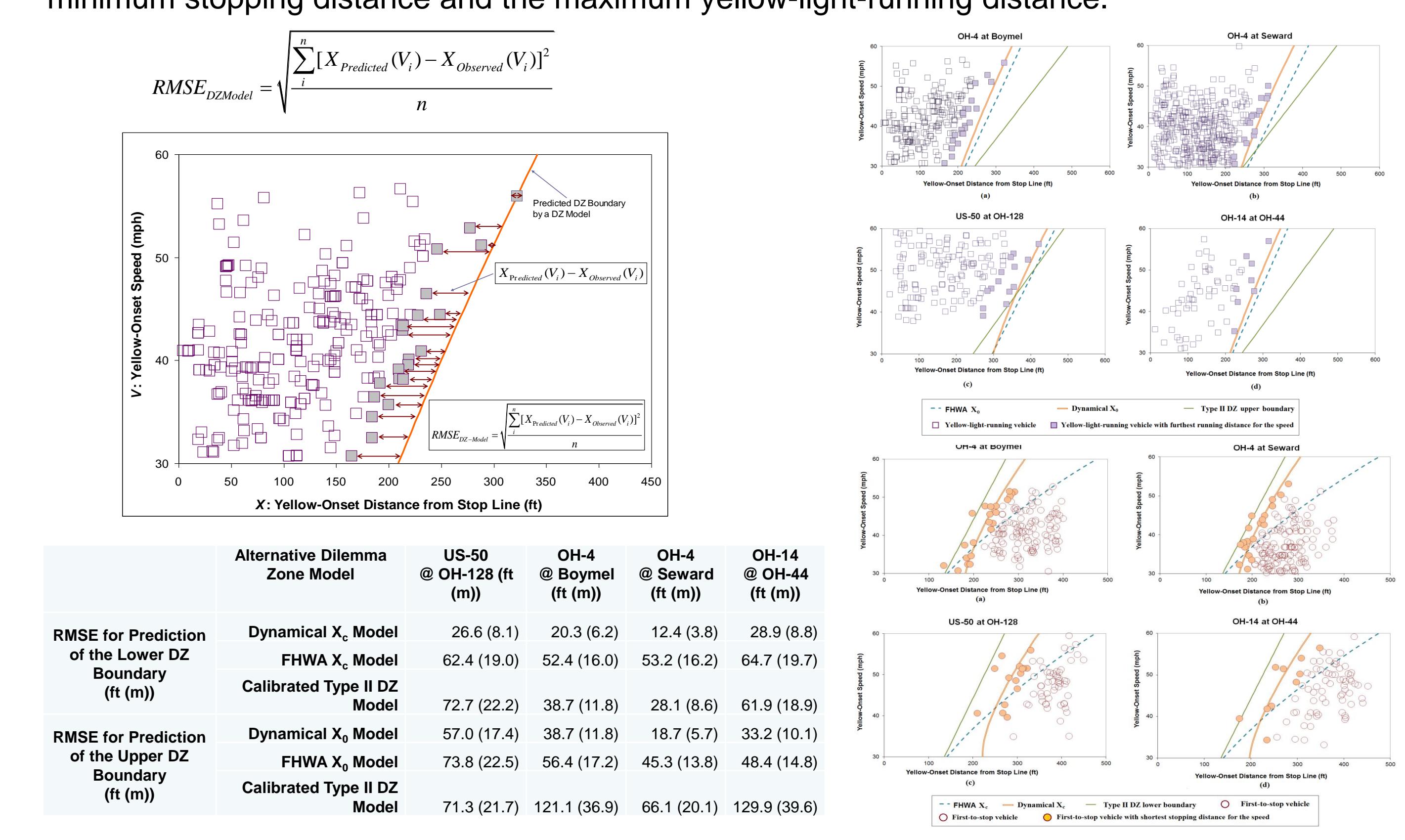
Final Form of the Dynamical Dilemma Zone Model

$$X_c = V_0 \delta_2(V_0) + \frac{V_0^2}{2a_2(V_0, V_{85th})} \quad \delta_2(V_0) = \delta_2(V_0) = 0.274 + \frac{30.392}{V_0} \quad a_2(V_0, V_{85th}) = f(V_0, V_{85th}) = \exp(3.572 + \frac{-25.013}{V_0}) - 17.855 + \frac{480.558}{V_{85th}}$$

$$X_0 = V_0 \tau + \frac{1}{2} a_1(V_0, V_{85th}) (\tau - \delta_1(V_0))^2 \quad a_1(V_0, V_{85th}) = f(V_0, V_{85th}) = -23.513 + \frac{658.948}{V_0} + 0.223 \cdot V_{85th}$$

Evaluation of the Dynamical Dilemma Zone Model

- Compare the dynamical DZ model to the traditional DZ model (constant δ_1 , δ_2 , a_1 , and a_2 values recommended by FHWA) and the Type II DZ Model (calibrated using the observed trajectory data).
- Performance Indicator:** Root-mean-square error (RMSE) that measures the horizontal deviation between the predicted DZ boundary and the observed DZ boundaries represented by the observed minimum stopping distance and the maximum yellow-light-running distance.



- Result: When compared to the traditional DZ model, the dynamical DZ model reduces the predicting error by 62% and 34% for the prediction of the lower and upper boundaries, respectively.
- Result: When compared to the calibrated Type II DZ model, the dynamical DZ model reduces the predicting error by 56% and 62% for the prediction of the lower and upper boundaries, respectively.

Conclusions

- The dynamics of DZ have been modeled; and, the resulting models have been verified.
- The dynamical DZ model outperforms other existing DZ models in terms of prediction accuracy.