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Introduction

A VARIANT OF SHORTEST PATH PROBLEM

The problem seeks to optimize a combination of two path attributes, one of
which is evaluated by a nonlinear function, i.e.

minimize P{ + h(P%)
where P¥ (i =1,2) is ith property of path k and h is a general nonlinear
function.

0
Nonlinear function of one path attribute
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Introduction

LITERATURE REVIEW

@ Dial (1979) proposes an algorithm which can solve the shortest path prob-
lem with the linear combination of two path attributes.

@ Henig (1985) uses a line search method to find the path that admits the
best upper bound and further close the gap with a K-shortest path search.

@ Mirchandani & Wiecek (1993) refines Henig's linear search method.
@ Tsaggouris & Zaroliagis (2004) provides a two-phase algorithm.
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Introduction

LITERATURE REVIEW

@ Dial (1979) proposes an algorithm which can solve the shortest path prob-
lem with the linear combination of two path attributes.

@ Henig (1985) uses a line search method to find the path that admits the
best upper bound and further close the gap with a K-shortest path search.

@ Mirchandani & Wiecek (1993) refines Henig's linear search method.
@ Tsaggouris & Zaroliagis (2004) provides a two-phase algorithm.

MAIN DIFFERENCES FROM EXISTING WORK

@ The general nonlinear function;
@ Efficient partial path enumeration;

@ Graphical illustration.
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Applications

NONLINEAR TRAFFIC ASSIGNMENT PROBLEM

@ Nonlinear valuation of travel time and emissions (Gabriel & Bernstein 1997)
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@ Nonlinear valuation of travel time and emissions (Gabriel & Bernstein 1997)

DISTANCE-BASED CONGESTION PRICING

@ Nonlinear toll function (Lawphongpanich & Yin 2012)
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NONLINEAR TRAFFIC ASSIGNMENT PROBLEM

@ Nonlinear valuation of travel time and emissions (Gabriel & Bernstein 1997)

DISTANCE-BASED CONGESTION PRICING

@ Nonlinear toll function (Lawphongpanich & Yin 2012)

TRADABLE MOBILITY CREDIT PROBLEM

@ Nonlinear toll function (Yang & Wang 2011, Nie 2012)
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Applications

NONLINEAR TRAFFIC ASSIGNMENT PROBLEM

@ Nonlinear valuation of travel time and emissions (Gabriel & Bernstein 1997)

DISTANCE-BASED CONGESTION PRICING

@ Nonlinear toll function (Lawphongpanich & Yin 2012)

TRADABLE MOBILITY CREDIT PROBLEM

@ Nonlinear toll function (Yang & Wang 2011, Nie 2012)

OPTIMAL PATH PROBLEM CONSIDERING SCHEDULE PENALTY

@ Nonlinear schedule cost (Nie et al. 2011)
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A SIMPLE EXAMPLE
Assume that a traveler departs from home at 8:00 AM. His desired arrival time
at the workplace is 8:30 AM.
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Applications

A SIMPLE EXAMPLE
Assume that a traveler departs from home at 8:00 AM. His desired arrival time
at the workplace is 8:30 AM.

Schedule cost

t

0
Schedule cost:a non-monotone function of travel time
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Problem Formulation

FORMULATION

The problem is finding the path between an O — D pair r — s to
minimize Pf 4 h(P5), subject to: k € K (1)

where P¥ (1 =1,2) is ith property of path k and h is a general nonlinear function.
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Problem Formulation

FORMULATION

The problem is finding the path between an O — D pair r — s to
minimize Pf 4 h(P§), subject to: k € K (1)
where P¥ (1 =1,2) is ith property of path k and h is a general nonlinear function.

TWO POSSIBLE INTERPRETATIONS

(] P{‘ as monetary cost ¢k and Pﬁ‘ as travel time tx, the function h can be
considered as an evaluation of travel time in the monetary cost;

) P{‘ as travel time t, and Pf as travel distance /i, the function h can be
considered as a distance-based toll measured in the unit of time.
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Problem Formulation

FORMULATION

The problem is finding the path between an O — D pair r — s to
minimize Pf 4 h(P§), subject to: k € K (1)
where P¥ (1 =1,2) is ith property of path k and h is a general nonlinear function.

TWO POSSIBLE INTERPRETATIONS

(] P{‘ as monetary cost ¢k and Pﬁ‘ as travel time tx, the function h can be
considered as an evaluation of travel time in the monetary cost;

) P{‘ as travel time t, and Pf as travel distance /i, the function h can be
considered as a distance-based toll measured in the unit of time.

Hereafter, we shall consider h as a function of tx and ¢k is the other path cost.
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Algorithm Outline

BAsIC IDEA

@ Approximate the nonlinear function h(-) with a piecewise linear function;

@ Decompose the problem into several sub-problems associated with each
linear piece;

© Solve each sub-problem sequentially;

© Report the optimal solution or the best upper bound to the linearized
problem.
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Approximating nonlinear function h(t)

A PIECEWISE LINEAR FUNCTION H(t)

First, the feasible range for t is divided into m intervals as [L;, U;] where L; =0,
Un=B,and Lj = Uj_; for j =2,...,m.
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Approximating nonlinear function h(t)

A PIECEWISE LINEAR FUNCTION H(t)

For each segment j, the slope of the line, denoted as ~;, can be obtained as

_ h(U) = h(L)

Ry (2)

The line intersects with the vertical axis (t = 0) at
a; = h(L;) = L (3)
Therefore, we can write the piecewise linear function H(t) as follows:

H(t) = o+t ifte[l, Ulj=1,....m (4)
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Decomposition

Due to discretization, the linearized problem can be decomposed into a sequence
of subproblems as follows:

g\eipzj = ¢k + Ytk (5a)
subject to: tx € [L;, Uj] (5b)

Then, the optimal solution to linearized Problem (1) can be found by solving the
following problem:

z= min oj+2z (6)
Jj=1,....m

where z" is the optimal solution to the jth subproblem.
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Decomposition

Due to discretization, the linearized problem can be decomposed into a sequence

of subproblems as follows: minz = o + 7tk (5a)
kEK
subject to: tx € [L;, Uj] (5b)

Then, the optimal solution to linearized Problem (1) can be found by solving the
following problem:

z= min oj+2z (6)
Jj=1,..., m

where z" is the optimal solution to the jth subproblem.

The subproblem (5) is a constrained shortest path problem with a linear objective
function gk = ck + Yit«.
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Efficient Path Set

Suppose now that travellers would choose paths based on a general cost with a
linear function h, defined by

gk = ¢k + h(tx) = ck + ik, (7

where v € R is a real scalar that converts travel time to an equivalent monetary
cost. An efficient path is formally defined as follows in this paper.

Definition (Efficient Path)

A path k is efficient if (1) it is simple, i.e. it does not contain any cycles and
(2) for some v € R, there exists no other simple path k’ such that gy < g.

Simply speaking, an efficient path k must have minimum cost gi for some -y

among all simple paths between the O-D pair.
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Efficient Path Set

GRAPHICAL ILLUSTRATION OF EFFICIENT PATHS NOTATIONS

@ E,;: the set of efficient paths
@ K! = argmin{t,, k € K}
@ K2 = argmin{ck, k € K}
@ ki = argmin{cy, k € K1}
@ kp = argmin{ty, k € K?}

ot

tkl,f’

ty,

@ Ef ={k|ty <t k€ Es}

@ E, = {kltx > 1,k € Es}

@ Given E,, -y, a minimum cost simple path can be easily identified

@ Dial-Henig algorithm for generating E;;
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Solve the subproblem

DESCRIPTION & JUSTIFICATION

According to the feasible time interval of the subproblem [L;, U;] and two special
time points t and t, the subproblem could be divided into four cases:

Case 0: L;
Case 1: t
Case 2: Lj<t<
Case 3: t< Lj<
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Solve the subproblem

ILLUSTRATION OF CASE 1

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
t

interval j

NORTHWESTERN
UNIVERSITY



Solution Algorithm
000000000800

Solve the subproblem

ILLUSTRATION OF CASE 1
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(a) Efficient path exists within interval j (b) Efficient path does not exist within
interval j
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Solve the master problem

@ After solving each sub-problem, we update the lower bound and the best
upper bound of the master problem;

@ In some cases, the optimal solution to the sub-problem cannot be found
without path enumeration. When this happens, we will first check if the
current subproblem has a chance to improve the solution of the master
problem, then decide if the path enumeration is necessary.

@ Once all sub-problems are solved, we can report the best upper bound of
the master problem and the gap.
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Analytical results

Let k* be an optimal solution to Problem (1) linearized with a piecewise linear
function H(:). If 1 > 72 > ... > vm, i.e. H(-) is concave, then k* € Ej.

| A\

Corollary 1

Let k* be an optimal solution to Problem (1) linearized with a piecewise linear
function H(:). If 1 > 7 > ... > vm > 0, i.e. H(-) is concave and non-
decreasing, then k* € Ef.

4

The proof is referred to the paper.
Note that the corollary verifies the result given in Henig (1985) and Mirchandani

& Wiecek (1993), which consider concave and monotone functions.
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Overview

@ Coded using TNM, a C++ library for network applications (Nie 2006)

@ Tested on a laptop with Window 7 Home Premium, Intel(R) Core(TM)
i7-2630QM CPU®@2.00GHz and 8.00 GB memory

@ Three classes of problems are tested:

e a small textbook example
e ten by ten grid networks
o a large real-world transportation network — Chicago Regional
Network
For the two latter classes of networks, link properties are randomly gener-

ated using Gamma distribution. The mean, variance and minimum value
of both travel time and cost are 2.5, 5 and 0.5, respectively.
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Grid Networks

OVERVIEW

The chosen O — D pair for the grid net-
work is from the left-bottom node to the
right-top node. Both acyclic and cyclic
networks are tested. The acyclic net-
work is included in the test mainly be-
cause it allows us to compare the best
solution given by the algorithm with the
true optimal solution obtained from the
brute-force path enumeration.

Topology of the 10 x 10 grid network
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Grid Networks

DIFFERENT TYPES OF PIECE-WISE LINEAR FUNCTIONS

The piece-wise linear functions we tested include increasing functions, decreasing
functions and non-monotone functions (“V" shape and “A” shape).

C
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Grid Networks

NUMERICAL RESULTS OF AcYCLIC GRID NETWORKS

Numerical results of two-piece linear functions for the 10 x 10 acyclic grid network

Pieces([L;, Uj]) Slopes(y;) Best Obj. Gap Enum. Paths Y Optimal Obj.

T 0,17];[17,45 41 74.6680 0 0 1000 74.6680

2 0,17];[17,45 4;3 74.6680 0 0 1000 74.6680

3 0,17];[17,45 3;4 60.7197 0 0 1000 60.7197
4(a)  [0,17];[17,45 -4:-3 -115.7760 23.4594 4000 2000  -121.7880
4(b)  [0,17];[17,45 -4;-3 -118.6350 20.5998 6000 3000  -121.7880
4(c)  [0,17]3[17,45 -4:-3 -121.7880 17.4469 11604 7000  -121.7880
4(d) [0,17);[17,45 -4;-3 -121.7880 0 53224 50000  -121.7880
5(a) [0,17];[17,45 434 -52.3360  0.9586 1295 1000 -52.3360
5(b) [0,17];[17,45 434 -52.3360 0 4899 5000 -52.3360
6(a) [0,17];[17,45 4;-4 -1.3766  29.8584 2000 1000 -10.1825
6(b) [0,17];[17,45 4;-4 -6.2832  24.9519 4000 2000 -10.1825
6(c) [0,17];[17,45 4;-4 -10.1825 21.0526 8000 4000 -10.1825
6(d) [0,17];[17,45 4;-4 -10.1825 0 48620 50000  -10.1825
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Grid Networks

NUMERICAL RESULTS OF AcycCLIC GRID NETWORKS

Approximate the nonlinear function of the following forms:
(1) a(x—b)*+¢;
(2) ae®™ +c.

Numerical results of nonlinear functions for the 10 x 10 acyclic grid network

Function Pieces([L;, U;]) Approx. Obj. Enum. Paths Y Optimal Obj. Gap

1 X2 [0,20],[20,45] 206.8788 0 50000  206.8788 0
2 0.1x2 [0,20],[20,45] 38.3303 0 50000 38.3303 0
3 1052 [0,20],[20,45] 1884.9188 0 50000  1884.9188 0
4 (x—120% [0,20],[20,45] 15.0206 97240 50000 13.2312 1.7894
5 —(x—20)> [0,20],[20,45] -451.0271 48620 50000  -451.8664  0.8393
6 0-1x [0,20],[20,45] 19.3682 0 50000 19.3682 0
7 &0-01x [0,20],[20,45] 14.0255 2 50000 14.0255 0
g8  —etlx [0,20],[20,45] -43.3725 48632 50000  -43.3725 0
9  —e00x [0,20],[20,45] 11.4818 8 50000 11.4818 0
10 e Ox [0,20],[20,45] 12.8476 4 50000 12.8476 0
11 e 00lx [0,20],[20,45] 13.5443 4 50000 13.5443 0
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Large Scale Real Transportation Network

OVERVIEW

A large scale real transportation net-
work, the Chicago Regional network
(Bar-Gera et al. 2010), is used to test
the computational performance of the
proposed algorithm. The network has
12,982 nodes and 39,018 links. All the
link cost and time are randomly gener-
ated.

Topology of the Chicago Regional
network
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Large Scale Real Transportation Network

NUMERICAL RESULTS

Numerical results of two-piece linear functions for the Chicago Regional network

Pieces([L;, U;]) Slopes(y;) Best Obj. Gap Enum. Simple Paths Y* CPU Time (s)
1 [0,60];[60,120 4;1 273.5131 0 0 1000 0.0130
2 [0,60];[60,120 4;3 273.5131 0 0 1000 0.0150
3 [0,60];[60,120 3;4 219.6575 0 0 1000 0.0160
4 [0,60];[60,120 0;3 53.3869 0.0665 879 1000 32.3070
5 [0,60];[60,120 -4;-3 -259.6078 107.6952 1254 1000 49.0000
6 [0,60];[60,120 -4;-1 -210.5143 36.7887 1254 1000 48.3290
7 10,60];[60,120 -4;4 -185.7762 0.9034 1341 1000 34.0860
8 [0,60];[60,120 4;-4 195.8455 143.1485 790 1000 33.1340
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Conclusions

Main findings from numerical experiments:

@ The performance of the algorithm is satisfactory for increasing and “V”
shape functions.

@ For the decreasing and “A” shape functions, extensive path enumeration
is often needed.

@ Piecewise linear functions with two or three segments seem to provide good
approximation to the nonlinear cost functions tested in our experiments
(quadratic and exponential).
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Questions or comments?
pengchen@u.northwestern.edu
www.pw-chen.com
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