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Abstract

This paper extends Vickrey’s (1969) commute problem for commuters wishing to pass a bottleneck for both cars and
transit that share finite road capacity. In addition to this more general framework considering two modes, the paper
focuses on the evening rush, when commuters travel from workto home. Commuters choose which mode to use and
when to travel in order to minimize the generalized cost of their own trips, including queueing delay and penalties for
deviation from a preferred schedule of arrival and departure to and from work. The user equilibrium for the isolated
morning and evening commutes are shown to be asymmetric because the schedule penalty in the morning is the differ-
ence between the departure and wished curves, and the schedule penalty in the evening is the difference between the
arrival and wished curves. It is shown that the system optimum in the morning and evening peaks are symmetric because
queueing delay is eliminated and the optimal arrival curvesare the same as the departure curves.

The paper then considers both the morning and evening peaks together for a single mode bottleneck (all cars) with
identical travelers that share the same wished times. For a schedule penalty function of the morning departure and
evening arrival times that is positive definite and has certain properties, a user equilibrium is shown to exist in which
commuters travel in the same order in both peaks. The result is used to illustrate the user equilibrium for two cases:
(i) commuters have decoupled schedule preferences in the morning and evening, and (ii) commuters must work a fixed
shift length but have flexibility when to start. Finally, a special case is considered with cars and transit: commuters have
the same wished order in the morning and evening peaks. Commuters must use the same mode in both directions, and
the complete user equilibrium solution reveals the number of commuters using cars and transit and the period in the
middle of each rush when transit is used.

c© 2013 The Authors. Published by Elsevier Ltd. Selection and/or peer review under responsibility of Delft University
of Technology.
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1. Introduction

The morning commute at a bottleneck with finite capacity to serve cars has been extensively studied
following Vickrey (1969). This bottleneck model considersa population of commuters that wish to depart
a bottleneck in order to reach a destination on time. All commuters are assumed to choose when to travel
in order to minimize the sum of the costs of their own free-flowtrip cost, queueing time, and penalty for
schedule deviation. The unique equilibrium that results allows no commuter to reduce his or her own travel
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cost by unilaterally choosing another arrival and departure position at the bottleneck (Smith, 1984; Daganzo,
1985).

The reverse problem in the evening has been addressed explicitly in only a few studies (Fargier, 1981;
DePalma and Lindsey, 2002), which recognize that the evening commute differs from the morning but
are limited to an isolated evening rush involving only cars.Vickrey (1973) and DePalma and Lindsey
(2002) state that evening commute is the mirror image of the morning commute unless the commuters are
heterogeneous. However, this paper shows that this is not the case, even with identical or mirrored values
of earliness and lateness in the morning and evening. If evening commuters also seek to minimize the cost
of their own trip, then the user equilibrium for the evening must be a pattern of bottleneck arrivals and
departures that allow no commuter to reduce his or her own cost by choosing another arrival position at the
bottleneck.

This paper addresses both the morning and evening commutes with a more general framework for cars
and a collective mode such as transit. In addition to the choice of when to travel, commuters are able to
choose which mode to use. Although mode choice has been studied in a number of works for the morning
commute (Tabuchi, 1993; Braid, 1996; Huang, 2000; Danielisand Marcucci, 2002; Qian and Zhang, 2011),
none considers the evening commute. These works also assumethat the transit service is parallel to the
road where the bottleneck resides. The bi-modal analysis inthis paper follows closely from Gonzales and
Daganzo (2012) which presents a user equilibrium solution for the morning commute where transit service
shares the bottleneck capacity with cars, for example by dedicating a lane to high occupancy vehicles. An
additional improvement in this paper is that the transit mode is considered to have finite capacity.

Although studying the morning and evening commutes in isolation provides some interesting insights,
the reality is that commuters make travel decisions based ontheir schedule for the whole day. Existing works
that seek to model daily travel decisions at a bottleneck arelimited, and what studies exist rely on linking
the morning and evening commutes via work duration (Zhang etal., 2005) or parking availability (Zhang
et al., 2008) and consider only the use of cars. There is a needfor understanding how commuters make daily
travel decisions with more general schedule preferences and considering the role that mode choice plays in
the dynamics of daily travel choices.

The paper is organized as follows. Section 2 describes the user equilibrium for the morning and evening
peaks in isolation. First, the well known user equilibrium solution for the morning commute is reviewed
and extended to consider transit service with finite capacity. Then, the user equilibrium for the evening is
presented and shown to be different from the result for the morning peak. Section 3 describes the duality
of the system optimum for the isolated morning and evening peaks. Finally, Section 4 presents the user
equilibrium findings for the combined morning and evening peaks if only cars are used, followed by a
special case in which the combined user equilibrium can be easily identified when commuters are able to
choose between cars and transit.

2. Asymmetry of Morning and Evening User Equilibrium

The user equilibrium problem for the morning peak has been extensively studied following Vickrey
(1969). The morning commute at a bottleneck serving cars anduncapacitated transit is presented in detail in
Gonzales and Daganzo (2012). In Section 2.1 of this paper, wepresent the morning user equilibrium solution
considering that transit may have a finite capacity. When no transit is operated, the bottleneck carries only
cars, and the person-carrying capacity isµ. When transit is operated, the person-carrying capacity ofthe
bottleneck is the combined capacity for cars and transit vehicles,µo. If the transit service is provided with
a dedicated right of way, thenµo reflects the sum of the capacity of the lanes for cars and the passenger-
carrying capacity of the transit service. Then, in Section 2.2 we present the user equilibrium for the evening
commute that occurs when commuters experience a schedule penalty based on when they choose to leave
work and arrive at the same bottleneck in the evening. Finally, in Section 2.3 we discuss the benefit of
providing transit in the morning and evening peaks, as well as the effect of transit’s capacity constraint.
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2.1. Morning Peak with Finite Transit Capacity

Following the formulation of the morning bottleneck problem in Vickrey (1969) and the extension to
two modes in Gonzales and Daganzo (2012), we consider a population ofN commuters that wish to depart
a bottleneck in order to arrive at a destination on time. These wished times can be described by a cumulative
count of commuters that wish to depart the bottleneck by timet in the morning,Wm(t). These commuters
are identical in their preferences except for their wished departure time. Each commuter chooses when to
arrive at the bottleneck and which mode to use (car or transit) in order to minimize the generalized cost of
his or her own trip including queueing time and schedule deviation. The resulting cumulative arrival curve,
Am(t), and departure curve,Dm(t), are the user equilibrium travel pattern for the morning commute.

In order to provide simple closed form solutions, we will consider the special case thatWm(t) is Z-shaped
with slopeλm ≥ µo. We will also consider a bilinear schedule penalty such thatcommuters experience each
minute of early departure as 0< e< 1 minutes of queueing time and each minute of late departure as L > 0
minutes of queueing time.1

The equilibrium arrival curve must have a slope,Ȧm(t), that provides no incentive for a commuter to
reduce the generalized cost of his or her commute by choosinganother arrival position. This slope depends
on the departure rate that each commuter experiences at the bottleneck. At equilibrium, an early commuter
choosing to depart∆t later will reduce his or her schedule penalty bye∆t. If the departure rate from the
bottleneck isµ, then the queueing delay will increase by∆t − µ∆t/Ȧm(t), and at equilibrium this must
exactly equal the reduction in schedule penalty. A similar condition must hold for late commuters. Zhang
et al. (2010) extend Vickrey’s equilibrium solution to consider bottlenecks with time-dependent capacity. In
the case of the morning commute with transit, the capacity depends on when transit service is operated, so
the slope of the equilibrium arrival curve follows a similarform:
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µ/(1− e) if commuters are early, only cars are used

µo/(1− e) if commuters are early, cars and transit are used

µo/(1+ L) if commuters are late, cars and transit are used

µ/(1+ L) if commuters are late, only cars are used

(1)

as illustrated in Figure 1.
If only cars are used, then the equilibrium takes the unique form identified in Smith (1984) and Daganzo

(1985), and the maximum delay is

Tmax,car =
NeL
µ(e+ L)

, (2)

experienced by the single commuter who departs the bottleneck on time. However, if commuters are able to
choose an alternative transit service with generalized cost per user for an uncongested tripzT > zC, wherezC

is the generalized cost of an uncongested car trip, then transit will be competitive when the queueing delay
for cars reachesTT = zT−zC. This definition of transit broadly represents many types ofcollective passenger
transportation modes, such as carpool lanes, which increase the passenger capacity of the bottleneck while
imposing some fixed cost or penalty on users for the inconvenience of using the higher-occupancy vehicle.

At the beginning and end of the rush, only cars are used while the total cost of a car commute including
queueing delay is less than that of a free-flow transit trip. Once the car delay grows toTT = zT − zC, then
commuters become indifferent between transit and car, so both modes will be used. When λm > µo, the
demand exceeds the combined capacity of the bottleneck for cars and transit. Ifλm ≤ µo, then all trips could
be served as they arrive (i.e., all trips would be served on time), and the delay for cars would hold steady at
TT , as shown in Gonzales and Daganzo (2012).

We consider the morning commute in three parts: commuters atthe beginning of the rush that only drive,
commuters in the middle of the rush that use cars and transit,and commuters at the end of the rush that only
drive. For convenience, we use points labeled in Figure 1 with capital letters to denote important values.

1In much of the bottleneck literature separate cost coefficients are considered for queueing time,α, schedule earliness,β, and
schedule lateness,γ. The definitions in this paper are equivalent withe= β/α andL = γ/α.



4 E.J. Gonzales and C.F. Daganzo/ Procedia Social and Behavioral Sciences 00 (2013) 1–17

Wm(t)

Dm(t)

tA

NBD

NAB

NDE

μ

B

A

E

tE

λm

D

C

μo

Am(t)

μ

TT

TT

Tmax

μ

1−e

μ

1+L

μo

1−e

μo

1+L

t

#

Fig. 1. User equilibrium arrival and departure curves for the morning commute with cars and transit.

For example,tA is the time associated with point A, andNAB = NA − NB is the total number of commuters
to pass between points A and B.

Let the segmentAB denote the departures of early commuters at rateµ when the queueing delay is less
thanTT and transit is not yet used. At point B, the queueing delay is equal toTT , so the number of early
drivers that travel before transit service begins is:

NAB = µTT/e. (3)

Likewise, the segmentDE denotes the departures of late commuters at rateµ when the queuing delay is less
thanTT and transit is no longer used. The number of late drivers thattravel after transit service ends is:

NDE = µTT/L. (4)

This leaves the remaining commuters to depart the bottleneck in the middle of the rush at rateµo when the
queueing delay exceedsTT so transit is competitive and both modes are used simultaneously. By subtracting
(3) and (4) from the total number of commuters and combining terms, the number of mid-rush travelers is:

NBD = N −
µTT(e+ L)

eL
. (5)

The equilibrium arrival curve must satisfy the required slopes from (1) and make the arrival and departure
curves starting at A to meet again at E as shown in Figure 1. With the early and late drivers accounted for,
the equilibrium arrival and departure curves in the middle of the rush become another bottleneck problem
whereNBD commuters experience queueing in addition toTT . Even though some of the additional costs
experienced by transit riders are not in the form of travel time, it is expressed graphically as such so that the
arrival and departure curves in Figure 1 account for all of the costs experienced by the users. Following (2),
the maximum additional delay isNBDeL/µo(e+ L). So, substituting (5), the maximum total queueing delay
is:

Tmax= TT +

(

N −
µTT (e+ L)

eL

)

eL
µo(e+ L)

(6)
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The solution determines the point C where the commuter with the maximum queuing delay departs the
bottleneck on time.

The ratio of early and late commuters is the same when only cars are used and when cars and transit are
used because of the required slopes of the arrival curves forall early and late commuters. Following from
(3) and (4) this ratio is:

NAB

NDE
=

NBC

NCD
=

L
e
, (7)

which is the same relationship identified in Vickrey (1969).

2.2. Evening Peak with Finite Transit Capacity

Usually the evening commute is assumed to be the mirror of themorning commute. A couple of papers
have addressed the evening commute explicitly for a bottleneck serving only cars (Fargier, 1981; DePalma
and Lindsey, 2002). We consider an evening commute problem that is similar to Vickrey’s bottleneck model
for the morning commute except that commuters experience a schedule penalty associated with their choice
of arrival time at the bottleneck, which depends on when theychoose to leave from work. For generality, the
evening bottleneck has a passenger capacity ofµ′ when only cars are used andµ′o when both cars and transit
use the bottleneck. These are not necessarily the same capacities as in the morning. In order to provide
simple closed form solutions, we consider a case similar to that of Section 2.1 in whichN commuters wish
to travel past the bottleneck with a Z-shaped wished curve,We(t) that has slopeλe ≥ µ

′
o(1+ e′). Commuters

experience a cost for their trip associated with queuing delay and a schedule penalty for their choice of
arrival time at the bottleneck: earliness penalty,e′ > 0, and lateness penalty, 0< L′ < 1. We will first
present the user equilibrium solution if only cars are used,and then the solution is extended to consider a
bottleneck that can serve commuters at rateµ′ when only cars are used and at rateµ′o when cars and transit
are used.

Since the schedule penalty is measured relative to the arrival curve instead of the departure curve, the
equilibrium slopes must take a different shape. As in the morning commute, the slope of the equilibrium
arrival curve,Ȧe(t), must allow no commuter to reduce the cost of his or her own trip by choosing another
travel time. At equilibrium, an early commuter choosing to arrive ∆t later will reduce his or her schedule
penalty bye∆t. The queueing delay will increase bẏAe(t)∆t/µ′ − ∆t, and at equilibrium this must exactly
equal the reduction in schedule penalty. The slope of equilibrium arrival curve in the evening must satisfy:

Ȧe(t) =
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µ′(1+ e′) if commuters are early, only cars are used

µ′o(1+ e′) if commuters are early, cars and transit are used

µ′o(1− L′) if commuters are late, cars and transit are used

µ′(1− L′) if commuters are late, only cars are used

(8)

so that commuters have no incentive to choose another arrival time. The resulting equilibrium arrival and
departure curves are illustrated in Figure 2. Note that in the evening the on time commuter corresponds to
the point whereAe(t) intersectsWe(t).

If the bottleneck is used only by cars, then the capacity isµ′ throughout the rush and points B′, C′, and
D′ are all at the same position. There is a unique starting pointA′ such that following the equilibrium slopes
prescribed above, there will be a single point E′ whereAe(t), De(t), andWe(t) all meet again at the end of
the rush. As in the morning, the longest queuing time,T′max,car, is experienced by the on time commuter, and
the number of early and late commuters must satisfy:

NA′B′ =
T′max,carµ

′(1+ e′)

e′
(9)

ND′E′ =
T′max,carµ

′(1− L′)

L′
. (10)
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Fig. 2. User equilibrium arrival and departure curves for the evening commute with cars and transit.

Clearly, there is an asymmetry between the morning and evening commutes, because the ratio of early and
late commuters does not equal that for the morning:

NA′B′

ND′E′
=

L′(1+ e′)
e′(1− L′)

. (11)

The reason for the asymmetry is that earliness and lateness are measured relative to the departure curve
from the bottleneck in the morning and relative to the arrival curve at the bottleneck in the evening. This
difference changes the shape of the user equilibrium even if commuters are identical. This example shows
that the user equilibrium for the morning and evening commutes exhibit specific intricacies that should be
studied as such.

The maximum queuing delay can be obtained by substituting (9) and (10) intoN = NA′B′ + ND′E′ , and
solving forT′max,car. The resulting cost is similar to the morning commute:

T′max,car =
Ne′L′

µ′(e′ + L′)
. (12)

Although this means that the total cost of the morning and evening commutes are the same ife = e′ and
L = L′, we might expect workers to commute to and from work shifts with specific start and end times.
Therefore, it is more reasonable to assume thate < e′ and L > L′. Note that if the lateness penalty
diminishes toward zero, the amount of queuing decreases andcommuters are more likely to stay late at
work or linger in the neighborhood in order to avoid the cost of queuing.

Suppose that a transit service is operated that provides thebottleneck with a combined capacity to serve
commuters at rateµ′o. The transit service will be used when the queueing delay forcars reachesTT = zT −zC

at which point transit becomes an attractive alternative. Just as in the morning commute, we consider the
evening commute in three parts: commuters are the beginningof the rush that only drive, commuters in the
middle of the rush that use cars and transit, and commuters atthe end of the rush that only drive.

Let the segmentA’B’ denote the arrivals of early commuters at rateµ′(1+ e′) when the queueing delay
is less thanTT . Similarly, segmentD’E’ denotes the arrivals of late commuters at rateµ′(1− L′) when the
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queueing delay is also less thanTT . The number of early and late commuters when cars are not usedis
obtained by evaluating (9) forNA′B′ and (10) forND′E′ with TT in place ofT′max,car. Then, by subtracting
these values from the total number of travelers, the number of commuters traveling in the middle of the rush
when both cars and transit are used is:

NB′D′ = N −
µ′TT(e′ + L′)

e′L′
. (13)

Note that the expression forNB′D′ takes the same form as (5) forNBD.
Just as for the morning commute, the remaining equilibrium arrival curve in the middle of the rush

becomes another bottleneck problem whereNB′D′ commuters experience queueing in addition toTT. The
arrival and departure curves in Figure 2 account for the costexperienced by transit riders as well as car
commuters. Following (12), the maximum additional delay isNB′D′e′L′/µ′o(e′ + L′). So, substituting (13),
the maximum total queueing delay in the evening is:

T′max = TT +

(

N −
µ′TT(e′ + L′)

e′L′

)

e′L′

µ′o(e′ + L′)
, (14)

which is also the same form as (6) forTmax. This solution determines the position of C′ as shown in Figure 2.

2.3. Benefit of Transit Service
In the preceding sections, the user equilibrium solution for the morning and evening commutes have

been presented when a bottleneck serves both cars and transit. We now consider the total social benefit of
providing transit service during the peak and how this benefit is affected by the capacity of the transit service.
The benefit of transit is the difference between the total cost of the commute with no transit and the cost of
the same commute when a transit service is available for people to choose. As in the previous section, we
consider wished curves in the morning and evening peaks thathave slopesλm ≥ µo andλe ≥ µ

′
o(1+ e′).

Considering the morning commute, (7) gives us that the number of early and late travelers is the same
whether or not transit service is provided. Therefore, the total social cost forλm compared to the case if all
commuters share an identical wished departure time is a reduction in schedule penalty betweenW(t) and
a vertical line through the critical departure time at C. From the geometry of the Z-shaped wished curve,
the reduced earliness cost iseN2

AC/2λm, and the reduced lateness cost isLN2
CE/2λm. Since this difference

is unaffected by the provision of transit service as long asλm ≥ µo, the benefit of providing a bottleneck
capacityµo with transit service may be evaluated for the simpler case that all commuters wish to travel at
the same time.

If all commuters have the same wished departure time preference, then every commuter will experience
an identical cost in equilibrium. The total social cost of the morning commute, not counting the cost of
a free flow car trip, is given byNTmax,car when no transit is operated andNTmax when transit is operated.
Substituting from (2) and (6), the benefit of providing transit service to make the bottleneck capacityµo is:

B(µo) =
N2eL
µ(e+ L)

− N

(

TT +

(

N −
µTT (e+ L)

eL

)

eL
µo(e+ L)

)

. (15)

If transit had no capacity constraint, and all passengers could be served at the rate they arrive, commuters
in the middle of the rush would depart the bottleneck at rateλm. The benefit of transit with unconstrained
capacity would be the same as ifµo = λm, that is to say (15) is evaluated forB(λm).

It turns out that the benefit of constrained transit is alwaysrelated to the benefit of unconstrained transit
by the following expression:

B(µo) =
1− µ/µo

1− µ/λm
B(λm), (16)

which can be verified by comparingB(µo) andB(λm) using (15).
In the evening, transit has a very similar effect as long asλe ≥ µ

′
o(1+ e′). UsingT′max,car from (12) and

T′max from (14) instead of the values from the morning commute, theexpression forB(µo) takes the same
form except thate′ replacese, L′ replacesL, andλe replacesλm. As a result, (16) also applies to the evening
commute. This result is useful, because it means that we can easily calculate the effect of changing transit
capacity without having to resolve the entire user equilibrium.
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3. Symmetry of Morning and Evening System Optimum

Up to this point we have considered the user equilibrium for the morning and evening peaks and high-
lighted some of the asymmetries between the two peaks. We nowturn our attention to the system optimum.
The system optimal arrival and departure curves are those which minimize the total social cost of the com-
mute assuming that people choose when to travel and which mode to use for the common good.

Although the user equilibrium involves queueing any time the demand exceeds the bottleneck capacity,
there should be no queueing in the system optimum because thequeue can always be eliminated by forcing
the arrival curve to take the same value as the departure curve. A well known property of the morning
commute with a single mode is that the optimal fine toll is the one which charges each departing vehicle an
equal value to the cost they would experience as queueing delay in equilibrium. As a result, the commuters
will exchange their queueing cost for toll cost and choose toarrive at the time when they are able to be served
(Vickrey, 1969). The system optimum solution for the morning peak with cars and transit was extended in
Gonzales and Daganzo (2012), and the result is that the system optimum can take one of the three forms: all
trips served by car, all trips served by transit, or trips areserved by a mix of cars and transit where transit is
used in the middle of the rush period.

Whereas the user equilibrium solutions for the morning and evening are not symmetric, as discussed in
the preceding section, there is a duality relation between the system optimum in the morning and evening
peaks. In the morningWm(t) is the wished departures from the bottleneck, and in the evening We(t) is the
wished arrivals at the bottleneck. In the system optimum, when queueing has been eliminated, the arrival
curve is the same as the departure curve, so the relationshipbetweenW andD is the same in the morning
and evening. Therefore, the solution to the morning commutesystem optimum problem is also the solution
to the evening problem.

Since the system optimum fine toll for the morning commute with a single mode and with both cars
and transit have already been developed (Arnott et al., 1990; Gonzales and Daganzo, 2012), we will not
repeat the full solutions here. However, it is worth pointing out that there are some implications for pricing.
The optimal toll in the morning should increase at at ratee while commuters are early and decrease at rate
−L while commuters are late. This is the same as charging commuters the equivalent of the cost time they
would have spent queuing in equilibrium. In the evening, theoptimal toll should increase at ratee′ while
commuters are early and decrease at rate−L′ while commuters are late. The evening toll is not the same
as the queueing delay that would have been experienced in equilibrium. The difference is due to the fact
that the schedule deviation in the evening is measured with respect to the arrival curve, and the arrival curve
keeps changing as the tolls change.

Another useful insight is that the optimal prices in the morning and evening peaks can be used to elimi-
nate queueing in congested street networks. Gonzales and Daganzo (2012) demonstrates that by eliminating
queueing in a network, optimal prices allow us to maintain the vehicle flow in a street network at capacity
as if the street network had a fixed capacity like a bottleneck. By preventing gridlock conditions, optimal
pricing of street networks is even more beneficial than optimal pricing at isolated bottlenecks. Since the
optimal prices in the evening commute have the same effect on eliminating queuing congestion, the optimal
evening tolls can also be implemented on congestable streetnetworks.

4. User Equilibrium for the Combined Morning and Evening Commutes

Although isolated morning and evening rushes are interesting, our goal is to understand both peaks
together since this is how we believe people make daily travel decisions. What little work exists on this
subject (Zhang et al., 2005, 2008) links the morning and evening commutes via work duration and parking
availability. These assumptions are relaxed in this paper to include mode choice and more general linkages
for cases with identical commutes; i.e., with the same wishes and schedule penalty functions. The linkages
are expressed by means of schedule penaltiesS(dm, ae) that are functions of two variables: a commuter’s
departure time from the bottleneck in the morning,dm, and their arrival time to the bottleneck in the evening,
ae. We considerS functions that are positive definite, twice differentiable function with partial derivatives
such that∂S/∂dm > −1, ∂S/∂ae < 1, and∂2S/∂dm∂ae ≤ 0. These conditions imply that earliness in the
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morning and lateness in the evening are less costly than queueing delay. A schedule penalty function may be
defined based on the difference between the time-dependent utility of being at work and the time-dependent
utility of being at home as described in Ettema and Timmermans (2003) and Zhang et al. (2005). In this
paper, the schedule penalty is the opportunity cost expressed in units of equivalent queueing delay for a
commuter not being at his or her preferred location.

Proposition 1 (User Equilibrium for Cars in Combined Morning and Evening Commutes). If S(dm, ae) is a
positive definite, twice differentiable function with partial derivatives such that∂S/∂dm > −1, ∂S/∂ae < 1,
and∂2S/∂dm∂ae ≤ 0, then a user equilibrium for a car-only bottleneck exists for the combined morning and
evening peaks in which the commuters depart and arrive in thesame first-in-first-out (FIFO) order in both
peaks.

Proof. We define the arrival times of commuters at the bottleneck in the morning and evening asam(m) and
ae(n), wherem andn are the arrival positions in morning and evening. For a bottleneck with FIFO queue
discipline, the departure order is the same as the arrival order, and the departure times at the bottleneck are
dm(m) andde(n).

The departure curves in the morning and evening are determined by the arrival curves. The first vehicle
in each peak is served without delay because no queue has formed, sodm(0) = am(0) andde(0) = ae(0).
Since the bottleneck serves trips at capacityµ during the morning peak andµ′ during the evening peak, the
departure curves are given by:

dm(m) = am(0)+m/µ (17)

de(n) = ae(0)+ n/µ′. (18)

Thus, an equilibrium with the same order in the morning and evening is completely defined by the arrival
curves. The generalized cost for a commuter in positionsmandn is the sum of the schedule penalty and the
queuing time in each peak:

Z(m, n)
.
= S (dm(m), ae(n)) + dm(m) − am(m) + de(n) − ae(n). (19)

In order for the arrival curves to be an equilibrium of this type,Z(m, n) must reach a global minimum with
respect tom whenm = n and with respect ton whenn = m; i.e., Z(m, n) ≥ Z(n, n),Z(m,m). This is done
in two steps: (i) setting up the first order conditions and showing that there is a unique set of arrival curves
that satisfy them; and (ii) verifying that the solution is a global minimum.

The necessary first order conditions for the cost to reach a global minimum for a specific value ofmand
n are obtained by substituting (17) and (18) into (19):

∂Z
∂m
=
∂S
∂dm

ddm(m)
dm

+
1
µ
−

dam(m)
dm

= 0 (20)

∂Z
∂n
=
∂S
∂ae

dae(n)
dn

+
1
µ′
−

dae(n)
dn

= 0. (21)

The equilibrium arrival timesam andae must satisfy (20) and (21) for allm = n so that the same departure
order in the morning and evening yields the minimum generalized cost to each commuter. Following from
(20) and (21) are a pair of coupled ordinary differential equations:

dam(n)
dn

=
1
µ

(

∂S
∂dm
+ 1

)

(22)

dae(n)
dn

= −
1
µ′

(

∂S
∂ae
− 1

)−1

(23)

with mixed initial/final conditions:

am(N) − am(0) = N/µ (24)

ae(N) − ae(0) = N/µ′. (25)
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The unique solution of (22), (23), (24), and (25) identifies the arrival curves. Note that they are increasing.
It remains to be shown thatZ(m, n) ≥ Z(n, n) andZ(m,m) for all m, n. The proof of both inequalities is

very similar and therefore only the first is given. Consider the difference in generalized cost for a commuter
who arrives at positionn in the evening rush but at positionm in the morning rush compared to a commuter
who travels at positionn in both rushes. By substituting (17) and (18) into (19), evaluatingZ(m, n)−Z(n, n),
and simplifying, this difference may be expressed as:

Z(m, n) − Z(n, n) = S (dm(m), ae(n)) − S (dm(n), ae(n)) +
1
µ

(m− n) − (am(m) − am(n)) . (26)

We will make use of two expressions to show thatZ(m, n) − Z(n, n) ≥ 0. For simplicity of notation, we
use subscriptsm ande (in this proof only) to denote the partial derivatives ofS with respect to its first and
second arguments. Now consider the last term of (26), the difference in morning arrival time, which can be
calculated using the differential equation from (22) evaluated at the local minimum:

am(m) − am(n) =
∫ m

n

dam(x)
dn

dx=
1
µ

∫ m

n
Sm

(

am(0)+
x
µ
, ae(x)

)

dx+
1
µ

(m− n) . (27)

Now consider the first term of (26), which is:

S(dm(m), ae(n)) − S(dm(n), ae(n)) =
1
µ

∫ m

n
Sm

(

am(0)+
x
µ
, ae(n)

)

dx. (28)

By substituting (27) and (28) into (26) and canceling terms,we see that:

Z(m, n) − Z(n, n) =
1
µ

∫ m

n

{

Sm

(

am(0)+
x
µ
, ae(n)

)

− Sm

(

am(0)+
x
µ
, ae(x)

)}

dx≥ 0. (29)

The last inequality holds becauseSme ≤ 0, so thatSm is non-increasing in its second argument. Thus,
Z(m, n) ≥ Z(n, n) for all n.

Confirmation thatZ(m, n) ≥ Z(m,m) follows a similar procedure. We begin by using (19) to evaluate
Z(m, n) − Z(m,m):

Z(m, n) − Z(m,m) = S (dm(m), ae(n)) − S (dm(m), ae(m)) +
1
µ′

(n−m) − (ae(n) − ae(m)) . (30)

The last term of (30) is the difference in evening arrival time. It can be evaluated using thedifferential
equation from (23), which can be equivalently expressed asdae(n)/dn= 1/µ′(1−Se), whereSe is evaluated
at the local minimum:

ae(n) − ae(m) =
∫ n

m

dae(x)
dn

dx=
1
µ′

∫ n

m

1

1− Se

(

am(0)+ x
µ
, ae(x)

)dx. (31)

By expressing the first terms of (30) as integrals fromm to n and combining terms, these simplify to the
following expression:

S(dm(m), ae(n)) − S(dm(m), ae(m)) +
1
µ′

(n−m) =
1
µ′

∫ n

m

Se

(

am(0)+ m
µ
, ae(x)

)

1− Se

(

am(0)+ m
µ
, ae(x)

)dx+
1
µ′

∫ n

m
1dx

=
1
µ′

∫ n

m

1

1− Se

(

am(0)+ m
µ
, ae(x)

)dx. (32)

Note that the denominator is the result of substitution ofdae/dn = 1/µ′(1− Se). The evaluation of (30) is
equivalent to subtracting (31) from (32):

Z(m, n) − Z(m,m) =
1
µ′

∫ n

m



















1

1− Se

(

am(0)+ m
µ
, ae(x)

) −
1

1− Se

(

am(0)+ x
µ
, ae(x)

)



















dx≥ 0. (33)
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The inequality holds becauseSem≤ 0, soSe is non-increasing in the first argument, and therefore 1/(1−Se)
is also non-increasing. ThusZ(m, n) ≥ Z(m,m) is shown for allm as well.

Proposition 1 proves the existence of a user equilibrium fora formulation based on a fairly general
schedule penalty function,S(dm, ae). This includes separable penalty functions of the forms: (i) S(dm, ae) =
Sm(dm) + s[ae − dm] + Se(ae), and (ii) S(dm, ae) = Sc(ae − dm), where theS functions of type described
in Proposition 1. Case (i) includes situations where morning and evening decisions are decoupled. Case
(ii) captures situations where users have the flexibility toarrive early or late, subject to a fixed work-shift
durationae − dm = ∆. The proposition also applies to linear combinations of (i)and (ii) and to piecewise
differentiable schedule penalty functions; e.g., when theS functions are bilinear, since as the reader can
verify, the proof holds verbatim for this case too. Section 4.1 presents the closed form user equilibrium
solutions for two typical cases when theS functions are bilinear penalty.

4.1. Independent Morning and Evening Schedule Preferences

Consider a combined morning and evening commute in which allN identical commuters must pass a
bottleneck by car. The schedule penalty for each commuter isS(dm, ae) = Sm(dm) + Se(ae), whereSm(dm)
andSe(ae) are bilinear with earliness penaltye ande′ and lateness penaltyL andL′ as described in Sec-
tions 2.1 and 2.2. Proposition 1 gives us that for this schedule penalty function there is a user equilibrium
with commuters traveling in the same order in both peaks. Therefore, the user equilibrium for the morning
and evening peaks can be solved independently such that eachcommuter chooses the same position in the
morning and evening.

The equilibrium arrival curves are based on the slopes of theschedule penalty function for early and late
commuters. In the morning and evening, by evaluating (22) and (23) withS as defined above, the slope of
the arrival curves with respect to queuing position must be:

dam(m)
dm

=















1
µ

(1− e) for early commuters
1
µ

(1+ L) for late commuters
(34)

dae(n)
dn

=















− 1
µ′

(−e′ − 1)−1 for early commuters

− 1
µ′

(L′ − 1)−1 for late commuters
. (35)

By inverting each of these expressions, we get the same slopes for the cumulative arrival curves with respect
to time as derived for the isolated morning and evening peaks(1) and (8).

The optimal prices that eliminate queueing for this combined commute are the same as the solution for
the separate morning and evening commutes. These achieve the system optimum as presented in Section 3.
In general, the time dependent prices in the morning are not the same as those in the evening because they
depend on the values of earliness and lateness. Only in the case thate= e′ andL = L′ are the optimal tolls
exactly the same in both peaks.

4.2. Rigid Work Duration

Consider the sameN identical commuters using a bottleneck in the morning and evening with cars only.
Now suppose that their schedule preference is for a work shift of rigid duration∆, but commuters have some
flexibility to choose when to work their shift, so they have a preferred start and end time that are∆ hours
apart. Then the schedule penalty takes the formS(dm, ae) = Sm(dm) + Sc(ae − dm) + Se(ae) whereSc = ∞

if ae− dm < ∆, andSc = 0, otherwise. This function prohibits commuters from working a shorter shift. The
Sm andSe functions are bilinear as defined above. The solution can be developed for general cases with any
value ofe+ e′, µ, andµ′, e.g., using (20) and (21). Whene+ e′ < 1 andµ ≤ µ′, a very simple solution
exists, which is presented here. These conditions are not totally unreasonable. They include the case that a
bottleneck has symmetric capacity in the morning and evening, and the flexibility of work-shift scheduling
may allow commuters to experience a low earliness penalty.

In the morning rush, commuters cannot pass the bottleneck ata rate greater than the capacity,µ. The
departure curve from the bottleneck in the morning determines the time when each commuter arrives at
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work to start his or her shift. The work shifts end at a time∆ later, and the commuters are able to leave work
in the evening and arrive at the bottleneck at the same rate they departed, sȯAe(t) = µ. The rigid shift links
the morning and evening commutes so that there should be no congestion at the bottleneck in the evening,
and thereforeAe(t) = De(t). Any penalty associated with passing the bottleneck earlyor late in the evening
is reflected in the travel decision in the morning. Therefore, the problem simplifies to a morning commute
formulation with a schedule penalty functionS(dm) that is bilinear with earliness penaltye+ e′ < 1 and
lateness penaltyL + L′. Sincee+ e′ < 1, the simplified solution exists.

The user equilibrium solution is illustrated in Figure 3 in which all queuing occurs in the morning
because the arrival curve in the morning determines not onlythe departure curve in the morning but also
both curves in the evening. The user equilibrium cumulativearrival curve in the morning,Am(t), and evening,
Ae(t), must satisfy:

Ȧm(t) =















µ

1−(e+e′) for early commuters
µ

1+(L+L′ ) for late commuters
(36)

Ȧe(t) = µ. (37)

The bottleneck arrival curve in the evening must also start at time∆ after the morning departures, soAe(t) =
Dm(t − ∆).

Wm(t)

Ae(t), De(t)

Dm(t)

μ

∆
Am(t)

μ

μ

1−e−e'

μ

1+L+L'

N

t

#

We(t)

Fig. 3. User equilibrium for the combined morning and evening commutes with rigid work shifts of length∆.

The resulting queues can be eliminated making sure that eachcommuter pays the equivalent of their
queuing cost as a toll. This toll could be administered entirely within the morning when the user equilibrium
queuing is experienced. However, the morning and evening commutes are intrinsically linked by the rigid
work shift, so the toll for each individual may be split between the morning and evening in any proportion
(e.g., half and half, or all in the evening), because each commuter chooses only the morning arrival time in
response to the costs of the morning and evening commutes.

4.3. Fixed Wish Order with Cars and Transit

We finally consider a more general case of the combined morning and evening commute in which the
wished bottleneck departure times in the morning and arrival times in the evening are in the same order but
may be distributed over time. Although restrictive, this isnot entirely unrealistic because commuters who
want to start work earlier in the morning are more likely to get off work earlier in the evening. We consider
Z-shaped wish curves with slopeλm in the morning andλe in the evening. The bottleneck can serve cars
and transit as described in Section 2.1, and the schedule penalty for each commuter is a separable function
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as described in Section 4.1. For simplicity, we present the equilibrium solution when the peaked demand
is high enough thatλm > µo andλe > µ

′
o(1+ e′). The transit capacity is always proportional toµo so that

the total number of commuters traveling when both cars and transit are used is the same in the morning
and evening. We also assume that commuters must use the same mode in the morning and evening; i.e.,
people who drive in the morning must take their car home in theevening, and people who ride transit in the
morning must use transit to return home.

Just as for the single peak, the transit service is operated at a fixed headway, and the difference between
the generalized cost of a one-way transit trip and a one-way free-flow car trip isTT = zT − zC. Commuters
are assumed to choose the times when they travel and whether to use car or transit in order to minimize the
total generalized cost of their daily round trip including queuing and schedule penalties. Therefore, transit
service will be competitive for all commuters that face a combined morning and evening queueing time of
at least 2TT .

Figure 4 shows the cumulative wished, arrival, and departure curves for the morning and evening user
equilibrium with cars and transit. The commuters that travel earliest experience less cost than a free-flow
transit trip, so all travel by car. The slope of the equilibrium arrival curves in the morning and evening
must satisfy (1) and (8), and the bottleneck serves commuters at rateµ in the morning andµ′ in the evening
when only cars are used. The queuing delay at B, afterNAB commuters have traveled, isTe = NABe/µ,
and the queue at B′ is T′e = NA′B′e′/µ′(1 + e′). We want to identify the points B and B′ at which transit
becomes competitive. Since the number of early car commuters in the morning and evening must be the
same,NAB = NA′B′. The value ofNAB is the one that makes the combined queueing time in the morning and
evening add up to the cost of an uncongested transit trip,Te + T′e = 2TT. By substitution, and solving for
NAB:

NAB =
2TT

e
µ
+ e′
µ′(1+e′)

. (38)

Note thatTe is not equal toT′e unlesse/µ = e′/µ′(1+e′). This asymmetry is due to the fact that a commuter
chooses to take transit based on the round trip cost, and thismay mean taking a more costly commute in one
rush in exchange for a less costly commute in another.

Wm(t)

Dm(t)

μ

Am(t)

N

μ

μo

λm λe

Ae(t)

Te

TL

Te'

TL'

C

B

A

D

E

C'

B'

A'

D'

E'

Tmax

Tmax'

μ

1−e

μo

1−e

μ

1+L

μo

1+L

μ'(1+e')

μo'(1+e')

μo'(1–L')

μ'(1–L')

t

#

We(t)

De(t)

μ'

μ'

μo'

Fig. 4. User equilibrium for the combined morning and evening peaks with cars and transit.

Similar logic as used to determineNAB can be used to identify how many commuters will travel late
and use only their cars. The lastNDE commuters, starting at point D, travel only by car as the queueing
time decreases and the transit is not competitive at the end of the rush. Following from the required slopes
of the equilibrium arrival curves in (1) and (8), the queueing delay at D isTL = NDEL/µ, and at D′ is
T′L = ND′E′L′/µ′(1− L′). Just as for the early drivers, the number of late commuterstraveling only by car in
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the morning and evening must match in order to conserve the flow of cars:NDE = ND′E′ . The point D and
D′ where transit is no longer competitive is the point whereTL + T′L = 2TT . This corresponds to:

NDE =
2TT

L
µ
+ L′
µ′(1−L′)

. (39)

Note again thatTL is only equal toT′L if L/µ = L′/µ′(1−L′). Furthermore, note that the queueing delay at the
start and end of transit use within morning and evening rushes need not be equal (i.e.,Te , TL, T′e , T′L). In
fact, the queue length at the start and end of transit use is only equivalent ifeµ′(1+e′)/e′µ = Lµ′(1−L′)/L′µ.
As a result, the ratios of early and late commuters derived for the isolated morning commute in (7) and for
the isolated evening commute in (11) no longer hold.

The remaining commuters that travel in the middle of the rushmust also be the same in number in the
morning and evening:

NBD = NB′D′ = N − NAB − NDE. (40)

These commuters travel by car and transit, and the bottleneck serves them at rateµo in the morning andµ′o
in the evening. The slope of the equilibrium arrival curves for these commuters must also satisfy (1) and (8).
The number of early and late commuters in this middle period of the rush are determined by these slopes.
Figure 5 shows how the delays relate to queueing position in the morning and evening rushes based on these
arrival slopes. In the figure, the on time commuter in the morning is at a later position than the on time
commuter in the evening. However, this is a consequence of the relative penalties for earliness and lateness
that are chosen for the figure, and this result could be switched with another schedule penalty function.

Te TL

NAB NNBC NDENCD

μ
e

μo

e μo

–L

μ
–L

Tmax

Te'

TL'

Tmax'

μ'(1+e')

#

Delay
(hrs)

(a)

NA'B' NNB'C' ND'E'NC'D'

e'

#

Delay
(hrs)

(b)

μo'(1+e')

e'

μo'(1–L')

L'

μ'(1–L')

L'

Fig. 5. Queueing delay in (a) the morning peak and (b) the evening peak for the combined user equilibrium with cars and transit.
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It follows from the slopes of the arrival curves as illustrated in Figures 5a and b that the number of early
commuters,NBC, and the number of late commuters,NCD, in the middle of the morning rush must satisfy
the following:

Tmax = Te+ NBCe/µo = TL + NCDL/µo (41)

N = NAB + NBC + NCD + NDE. (42)

The equilibrium values ofNBC andNBD are the solution to this system of equations. Likewise, the number
of early and late commuters in the middle of the evening rush,NB′C′ andNC′D′ , must satisfy the following:

T′max = T′e + NB′C′e
′/µ′o(1+ e′) = T′L + NC′D′L

′/µ′o(1− L′) (43)

N = NA′B′ + NB′C′ + NC′D′ + ND′E′ . (44)

Note that due to the asymmetry of the schedule penalties in the morning and evening, the number of early
and late commuters in the middle period of the rush are not necessarily equal. The critical commuter who
travels on time in the morning will be the same as the criticalcommuter traveling on time in the evening if
e/µ = e′/µ′(1+ e′) andL/µ = L′/µ′(1− L′).

We have shown the user equilibrium travel pattern for the combined morning and evening commutes with
cars and transit by specifying the slopes of the arrival curves in each peak and the number of commuters
early by car only, late by car only, and in the middle by car andtransit. We now turn our attention to the
number of commuters choosing to use transit in the combined commute. We compare this number with the
number of transit users that would be expected in an isolatedmorning or evening commute if we had not
considered the cost of the commutes together.

Proposition 2 (Transit Use in the Combined Commute). If commuters travel in combined morning and
evening commute with common wished order, then there are at least as many transit riders in the combined
user equilibrium as there are in the isolated morning and evening commutes together.

Proof. The bottleneck is assumed to be fully utilized at capacityµo in the middle of the morning rush and
µ′o in the middle of the evening rush. The transit capacity, which is assumed to be a fixed proportion of this
combined capacity, must be fully utilized. The number of transit riders isNT = NBDµT/µo = NBDµ

′
T/µ

′
o,

and since the capacity is not changing during this middle part of the rush,NT is always proportional to
NBD. Therefore, a comparison of the values ofNBD for the isolated and combined commutes is sufficient to
compare the number of transit users.

We compare the number of mid-rush commuters from the isolated morning and evening together as
calculated with twice the number of mid-rush commuters calculated for one direction of the combined user
equilibrium. The number of commuters for the combined equilibrium must be doubled becauseNBD =

NB′D′ . The following expression is equivalent to the statement ofthe proposition:

(

N −
TTµ

e
−

TTµ

L

)

+

(

N −
TTµ

′(1+ e′)
e′

−
TTµ

′(1− L′)
L′

)

≤ 2

















N −
2TTµ

e
µ
+ e′
µ′(1+e′)

−
2TTµ

L
µ
+ L′
µ′(1−L′)

















(45)

where the left side is the sum from the isolated peaks, from (5) and (13), and the right side is the twice
the value ofNBD for the combined peak, from (40). We will verify that (45) is true, thereby proving the
proposition.

By subtracting 2N from each side and dividing byTT , (45) simplifies to:

µ

e
+
µ

L
+
µ′(1+ e′)

e′
+
µ′(1− L′)

L′
≥

4
e
µ
+ e′
µ′(1+e′)

+
4

L
µ
+ L′
µ′(1−L′)

. (46)

The inequality in (46) holds if we consider only the terms with eande′ or only the terms withL andL′:

µ

e
+
µ′(1+ e′)

e′
≥

4
e
µ
+ e′
µ′(1+e′)

(47)

µ

L
+
µ′(1− L′)

L′
≥

4
L
µ
+ L′
µ′(1−L′)

. (48)
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Multiplying the first expression bye
µ

e′

µ′(1+e′) (
e
µ
+ e′

µ′(1+e′) ) and the second expression byL
µ

L′

µ′(1−L′) (
L
µ
+ L′

µ′(1−L′) ),
then subtracting the right hand side from the left and simplifying, (47) and (48) become

(

e
µ
−

e′

µ′(1+ e′)

)2

≥ 0 (49)

(

L
µ
−

L′

µ′(1− L′)

)2

≥ 0. (50)

These expressions are true for any value ofe, e′, L, andL′, so this verifies the statement of the proposition.

5. Conclusion

This paper has presented the user equilibrium for the morning commute with cars and transit with a
capacity constraint in which commuters wish to depart a bottleneck to get to a destination on time. The
reverse problem for the evening commute has also been presented in which commuters wish to leave their
origin and arrive at a bottleneck on time. It has been shown that the user equilibrium arrival curve in the
evening is not simply the reverse of the user equilibrium arrival curve in the morning. This asymmetry
occurs because schedule deviation in the morning is the difference between the departure curve and the
wished curve whereas schedule deviation in the evening is the difference between the arrival curve and the
wished curve.

Despite the asymmetry, the morning and evening user equilibrium do share some commonalities. The
maximum queuing delay experienced by the on time traveler inthe middle of the rush shares the same
relation to the earliness and lateness penalties in the morning and evening rush as shown by the similarity
of (6) and (14). The provision of competitive public transitalso provides a benefit by reducing the total
delay and schedule penalty in both peaks. The benefit of transit is reduced as the combined car and transit
capacity,µo, becomes more constrained. In both the morning and evening,the benefit of providing capacity-
constrained transit service is (1− µ/µo)/(1 − µ/λ) times the benefit of providing a transit service with no
capacity constraint.

The system optimum in the morning and evening are symmetric,because without wasteful queuing
delay, the arrival curve and departure are the same and the schedule penalty in the morning and evening can
be accounted for as the difference between the departure curve and wished curve. This result is important,
because it means that the system optimal tolls for the evening commute should not equal the cost of user
equilibrium queueing as is commonly known for the morning commute.

The results of the analysis have also been extended to consider the combined morning and evening
commutes. In the case that all commuters share identical wished times in the morning and evening and
the schedule penalty is a function of the morning departure and evening arrival times with the properties
described in Proposition 1, a user equilibrium has been shown to exist in which commuters travel in the
same order in both peaks. The results are used to show the solutions for two special cases of interest: (i) the
morning and evening commutes are independent, so each peak can be solved in isolation, and (ii) workers
must work a rigid shift of length∆ but may choose when to start and end, so the two peaks collapseinto a
single morning commute problem.

Finally, the paper presents the user equilibrium for a special case of the combined commute with cars
and transit in which commuters have the same wished order in the morning and evening. When commuters
are constrained to use the same mode in the morning and evening, they make their travel decisions based on
the combined cost that they will experience in the morning and evening peaks. The queueing delay when
transit is first used may not equal the queuing delay when transit is last used, because commuters make their
travel decisions in the face of the combined cost of the morning and evening commutes. One insight is that
when the combined morning and evening peaks are considered transit ridership is at least as great as the
sum of morning and evening riders that would be estimated by considering the morning and evening peaks
in isolation.
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The results of this paper highlight the differences between the morning and evening commute, and the
effect of considering the equilibrium with both peaks together. The different characteristics of the morning
and evening peaks make it necessary to treat them explicitly, because the equilibrium in the evening is not
generally the same equilibrium in a morning commute. Furthermore, insights from the consideration of
transit service and transit capacity are useful for planning transit services and understanding the factors that
affect mode choice and the temporal distribution of demand.
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