ISTTT20 - Tutorials

Traffic Flow Theory

Mijn presentatie spreekt over de verkeersstroom theorie !

Ludovic Leclercq, University of Lyon, IFSTTAR / ENTPE
July, 16th 2013

s

UNIV=RSIT= D= LYON

S ENTPE




Outline

Experimental evidences
— Traffic behavior on freeways
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» Traffic modeling
— The three representation of traffic flow
— The three kinds of traffic models
— Equilibrium (first order) model
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« The variational theory
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— Connections between the three traffic representations

« Some extensions to the theory



Experimental evidences



Traffic flow on a motorways (M6 in England)
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Data were kindly provided by the Highway Agency



Traffic representation
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Flow / occupancy plot on a motorway (M6)
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The fundamental
diagram (FD)



Different definitions of the FD
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Aggregation / impacts of local behavior (lane-changing, traffic composition,...)



Impact of the lane agregation on the FD
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Simulations are figures were kindly provided by Prof. Jorge Laval



Traffic Modelling



From discrete to continuous representations

Moskowitz’'s surface
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From micro to macro: Edie’s definitions
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The three representation of traffic flow

Eulerian T coordinates Lagrangian
N(t, x) X(t,n)
partials \Y \
symbol
name

N(t,x) # of vehicles that have crossed location x by time ¢
X(t,n) position of vehicle n at time ¢

T(n,x) time vehicle n crosses location x

(Laval and Leclercq, 2013, part B)



Classical classification of traffic models

Eulerian coordinates

Equilibirum model

— Mainly stochae
Y (LWR)

— Local interactions (car-following)

« Mesoscopic models :
. P . T coordinates
— Discrete or semi-discrete reprede

— Intermediate level for traffic representation
(vehicle clusters or link servers)

For further details see the model tree
from (van Wageningen-Kessels, PhD, 2013)



Equilibrium macroscopic model (1)
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 The PDE expression
— In Eulerian coordinates
kiO(k),= 0 dopsty

— in Lagrangian coordinates  speed

sV(s), =0

— In T coordinates spacing
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Equilibrium macroscopic model (2)

« The Hamilton-Jacobi (HJ) expression
— |In Eulerian coordinates

=0 \
— In Lagrangian coordinates Appropriate expression of

the FD
v=N(s)

— In T coordinates
h=H(r)



Overview of first order model solutions



Solutions for an unsaturated traffic signal (1)

C
flow N

General solution methods:
Hyperbolic equations (EDP),
characteristics, waves,...



Solutions for an unsaturated traffic signal (2)
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The Variational Theory



General considerations on the variations of N
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Legendre’s transformation: r(y’(0)k)
r(y'(t),k) S R(y'(t) = sgp(r(y'(t),k))

This makes costs independent from traffic
states but no longer from the paths

Equality is observed on the optimal wave paths



Variational theory (VT) in Eulerian —
General basis

HJ Equation: ¢=0(k) < 9,k=0(-0 k)
N, = pin(Nor) +A(T)

A(T) = j r(y'(t),k)dt

o(T)

Key VT result using
the Legendre’s transformation

General expression for the solutions:

N, =min( N, + A'(F))

I'eDp
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VT is really useful with PWL FD
(and especially triangular one)



VT in Eulerian — The Highway Problem

X N(X , t-(X -X)Iw) Triangular FD

Link

N(x,,t-(x-x,)/u)

Newell's model (1993) !!!
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Classical formulation of the Newell’s N-curve model
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Well-known as the three dectectors problem



VT in Lagangian - the IVP problem
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Newell's model again !!! (2002)



Classical formulation of Newell’s car-following model

Effective trajectory

w(l/(wk),~1/x)

(Newell, 2002)

>

t

The simplest car-following rule
Account for driver reaction time



VT In T coordinates
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Mesoscopic model
(Mahut, 2000; Leclercq & Becarie, 2012)



The mesoscopic LWR model

yeh!
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Variational theory - summary

» Variational theory exhibits the connections between the
three traffic representations for the LWR model

* Aunique model that leads to three solution methods

(numerical scheme) corresponding to the three different
vision on traffic flow

(macroscopic / mesoscopic / microscopic)

« Some previous models appears to be particular cases for

the LWR model and a triangular fundamental diagram in
different systems of coordinates



Extensions to the theory



Diverge: Newell's FIFO model

| 80%

(Newell, 1993)
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FIFO => Travel times should be equal whatever the destination is



Merge: Daganzo’s model

Free-flow

[ congestion

(Daganzo, Transportation Research part B, 1995)

This model has been proved consistent with experimental
observations a multitude of times

L. Leclercq (2013)



Other extensions

Need to be coupled with a route choice model to
simulate a network




The network fundamental diagram

Macroscopic Fundamental Diagrram (MFD)

o

cutput

Veh+m

(Daganzo & Geroliminis, 2008)
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Exercices



Problem statement

Let consider a freeway with two lanes and the following FD:
u=30 m/s ; w=4.28 m/s ; k=0.28 veh/m. Two points a et b
are respectively located at x=0 m and x=3600 m.

The flow at a is constant and equal to 3000 veh/h. At time
=120 s, the capacity at is reduced from 1800 veh/h during
10 minutes.

* Draw the fundamental diagram

* Determine the N-curve at x=3600, x=1800, x=600 and
x=0m

* Provide an estimate for the maximal length of the
congestion



The fundamental diagram
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N-curve at x=3600 m
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N-curve at x=1800 m




N-curve at x=600 m
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N-curve at x=0 m
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