ISTTT20 - Tutorials

Traffic Flow Theory

Mijn presentatie spreekt over de verkeersstroom theorie!

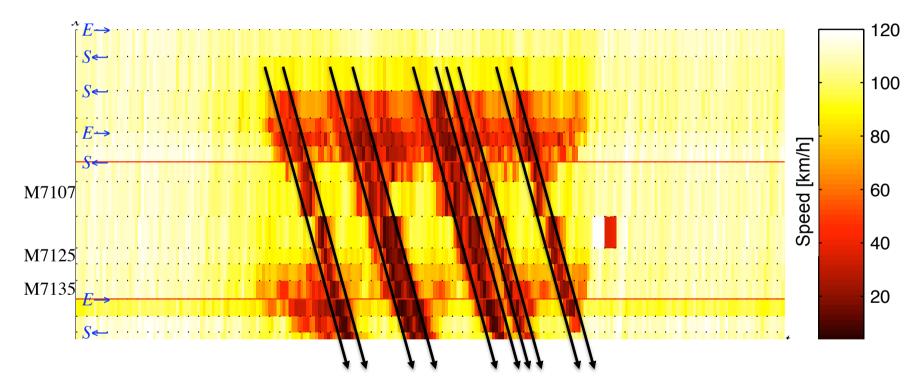
Ludovic Leclercq, University of Lyon, IFSTTAR / ENTPE July, 16th 2013

Outline

- Experimental evidences
 - Traffic behavior on freeways
 - The fundamental diagram
- Traffic modeling
 - The three representation of traffic flow
 - The three kinds of traffic models
 - Equilibrium (first order) model
- Overview of first order model solutions
- The variational theory
 - General basis
 - Connections between the three traffic representations
- Some extensions to the theory

Experimental evidences

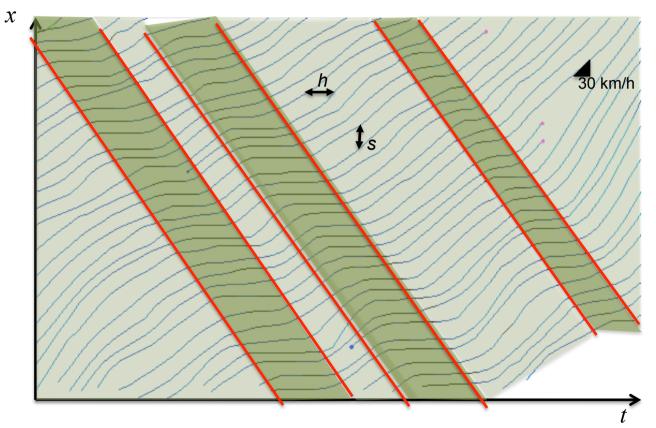
Traffic flow on a motorways (M6 in England)



Data were kindly provided by the Highway Agency

Traffic representation

5



Microscopic vision

Vehicle dynamics position x speed v

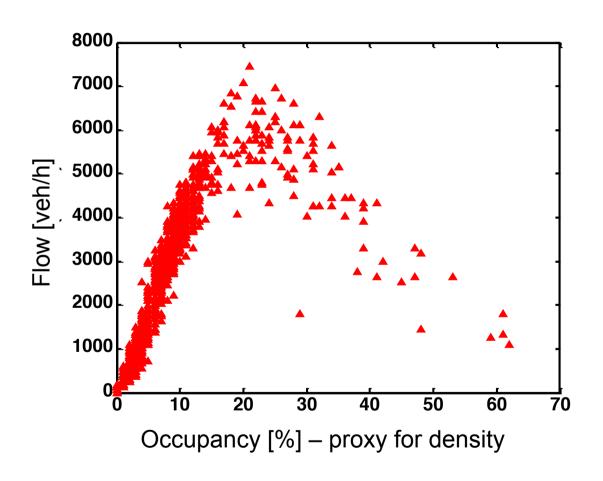
Interactions spacing *s* Headway *h*

Macroscopic vision

density k flow q

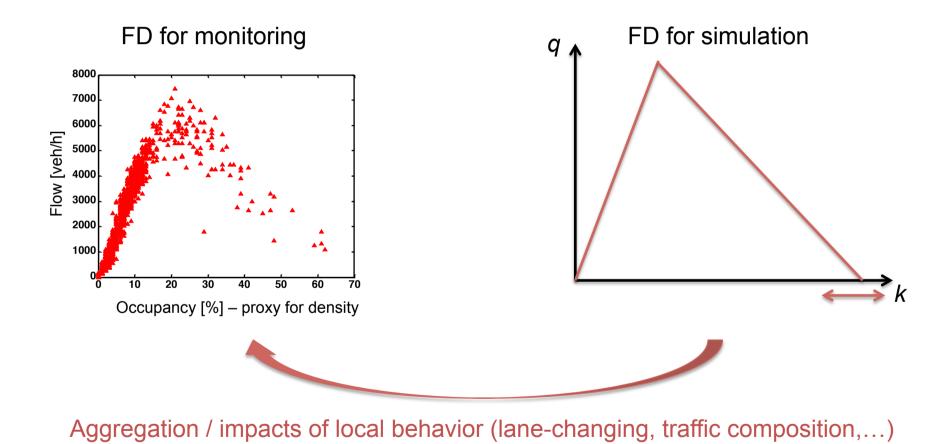
Shockwaves

Flow / occupancy plot on a motorway (M6)

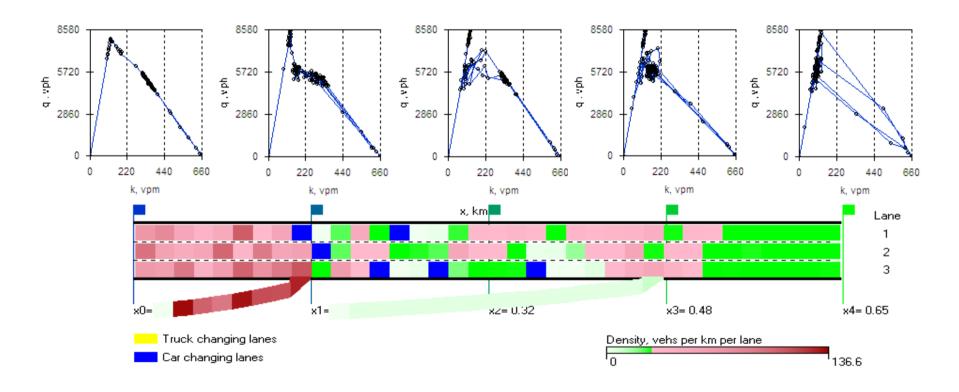


The fundamental diagram (FD)

Different definitions of the FD



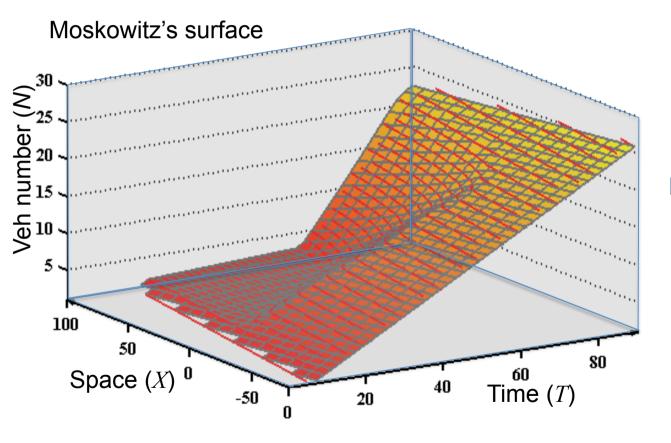
Impact of the lane agregation on the FD



Simulations are figures were kindly provided by Prof. Jorge Laval

Traffic Modelling

From discrete to continuous representations

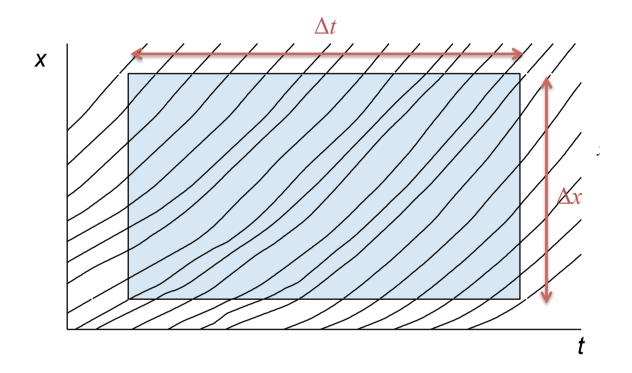


Eulerian coordinates N(t,x)

Lagrangian coordinates X(t,n)

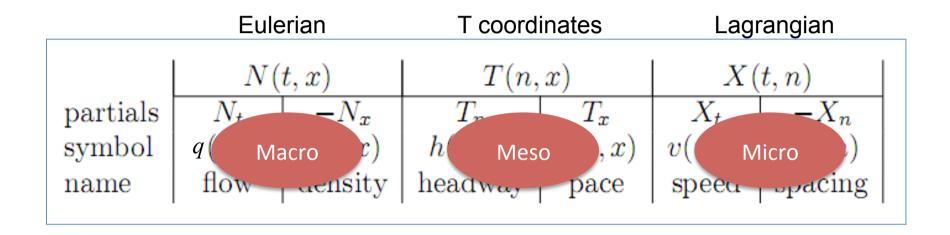
T coordinates T(t,n)

From micro to macro: Edie's definitions



$$q_i = \sum_{k} d'_k$$
 and $k_i = \sum_{k} \tau'_k$

The three representation of traffic flow



N(t,x) # of vehicles that have crossed location x by time t

X(t,n) position of vehicle n at time t

T(n,x) time vehicle n crosses location x

(Laval and Leclercq, 2013, part B)

Classical classification of traffic models

- Macroscopia
 - cation Contin
 - Eulerian coordinates may be distinguished per class)

order) / + transition states (2nd order)

- models
 - crete repr agrangian coordinates
 - Mainly stocha
 - Local interactions (car-following)
- Mesoscopic models
 - T coordinates Discrete or semi-discrete representation
 - Intermediate level for traffic representation (vehicle clusters or link servers)

Equilibirum model (LWR)

For further details see the model tree from (van Wageningen-Kessels, PhD, 2013)

Equilibrium macroscopic model (1)

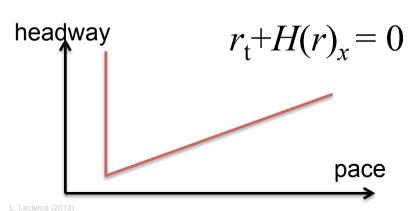
- The PDE expression
 - in Eulerian coordinates

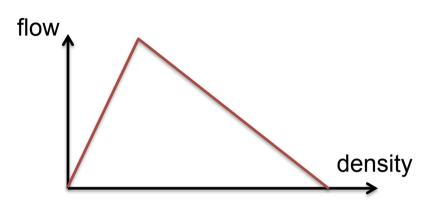
$$k_{\mathsf{t}} + Q(k)_{\mathsf{x}} = 0$$

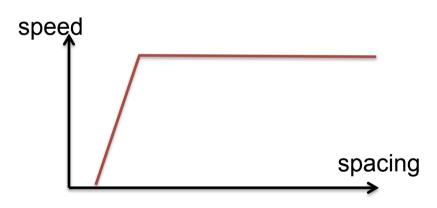
in Lagrangian coordinates

$$s_t + V(s)_x = 0$$

in T coordinates







Equilibrium macroscopic model (2)

- The Hamilton-Jacobi (HJ) expression
 - In Eulerian coordinates

$$q=Q(k)$$

In Lagrangian coordinates

$$v=V(s)$$

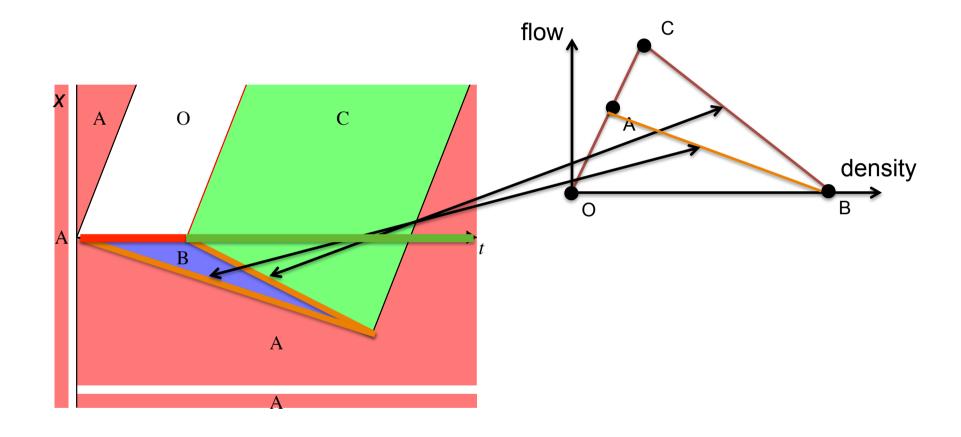
In T coordinates

$$h=H(r)$$

Appropriate expression of the FD

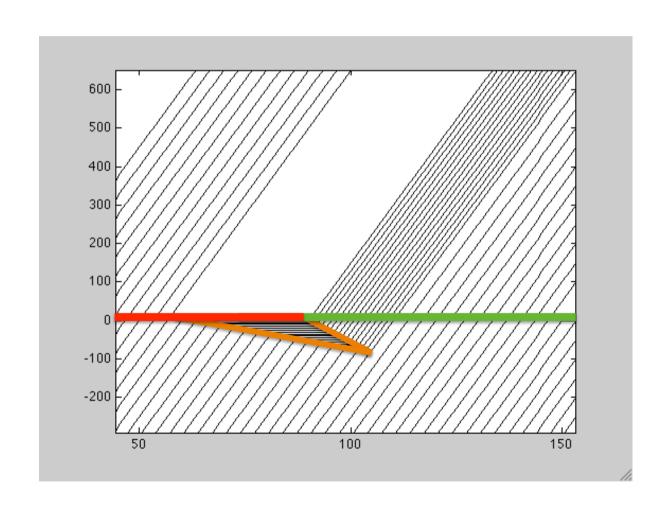
Overview of first order model solutions

Solutions for an unsaturated traffic signal (1)



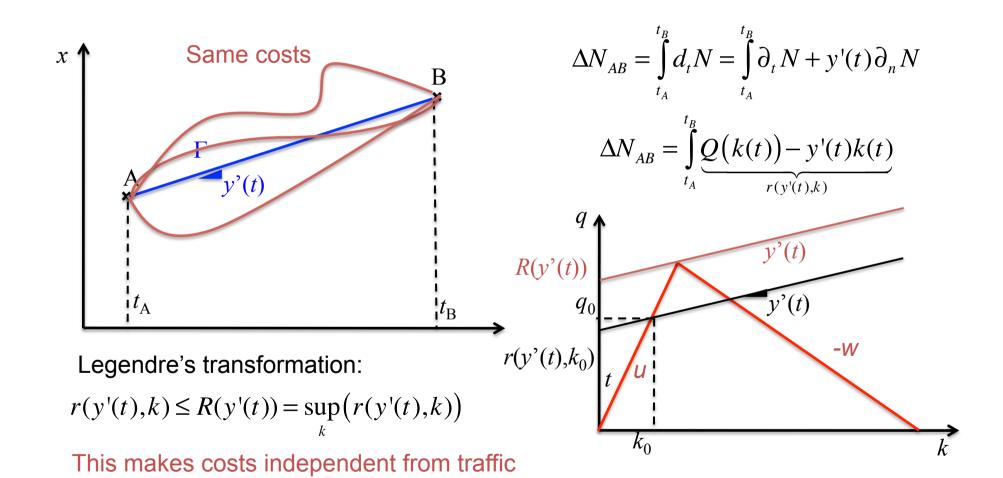
General solution methods: Hyperbolic equations (EDP), characteristics, waves,...

Solutions for an unsaturated traffic signal (2)



The Variational Theory

General considerations on the variations of N



Equality is observed on the optimal wave paths

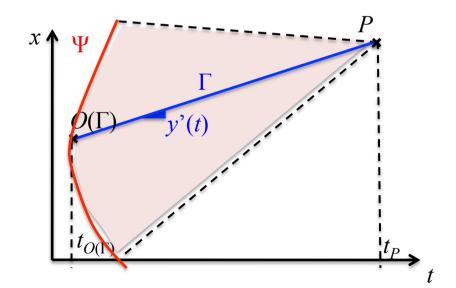
states but no longer from the paths

Variational theory (VT) in Eulerian – General basis

HJ Equation:
$$q = Q(k) \iff \partial_t k = Q(-\partial_x k)$$

General expression for the solutions:

$$N_{P} = \min_{\mathbf{I} \in D_{P}} \left(N_{O(\Gamma)} + \Delta(\Gamma) \right)$$
$$\Delta(\Gamma) = \int_{t_{O(\Gamma)}}^{t_{P}} r(y'(t), k) dt$$

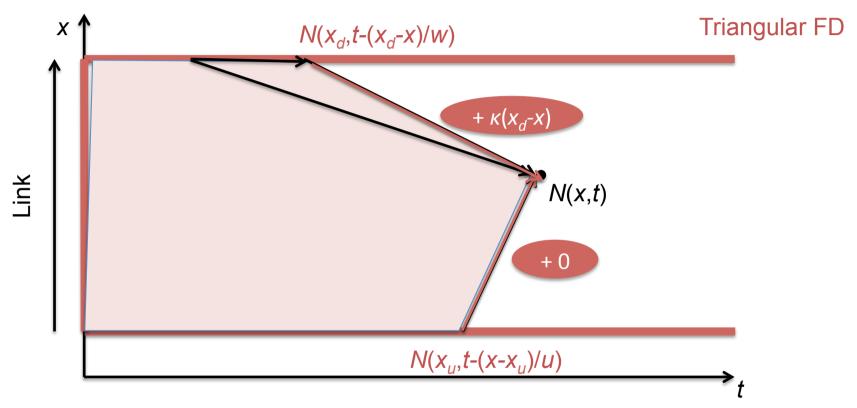




$$N_{P} = \min_{\Gamma \in D_{P}} \left(N_{O(\Gamma)} + \Delta'(\Gamma) \right)$$
$$\Delta'(\Gamma) = \int_{t_{O(\Gamma)}}^{t_{P}} R(y'(t)) dt$$

VT is really useful with PWL FD (and especially triangular one)

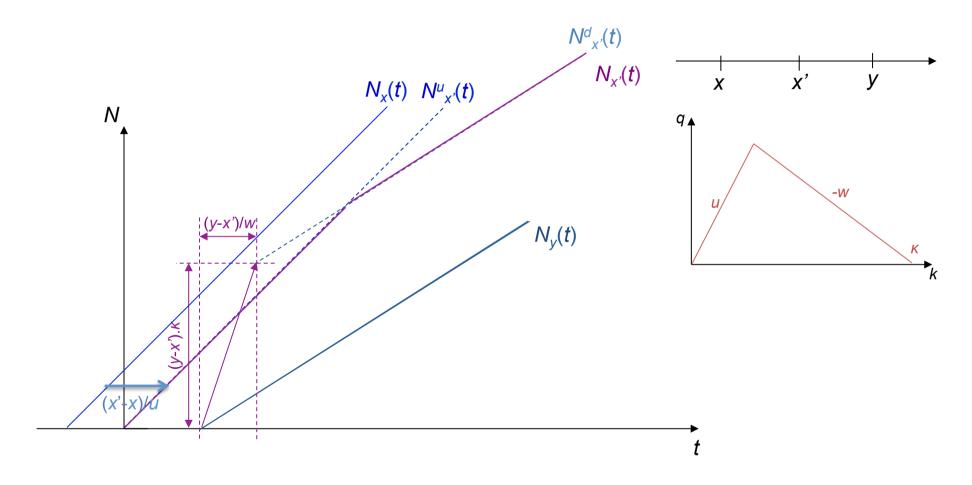
VT in Eulerian – The Highway Problem



$$N(x,t) = \min \left[\underbrace{N\left(x_{u}, t - \frac{(x - x_{u})}{u}\right)}_{free-flow}, \underbrace{N\left(x_{d}, t - \frac{(x_{d} - x)}{w}\right) + \kappa(x_{d} - x)}_{congestion} \right]$$

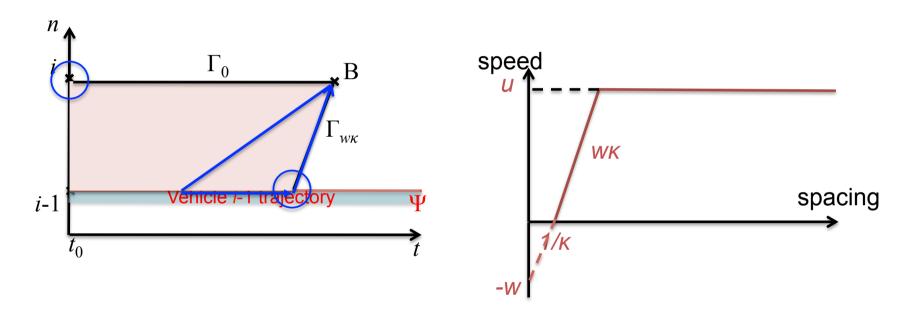
Newell's model (1993) !!!

Classical formulation of the Newell's N-curve model



Well-known as the three dectectors problem

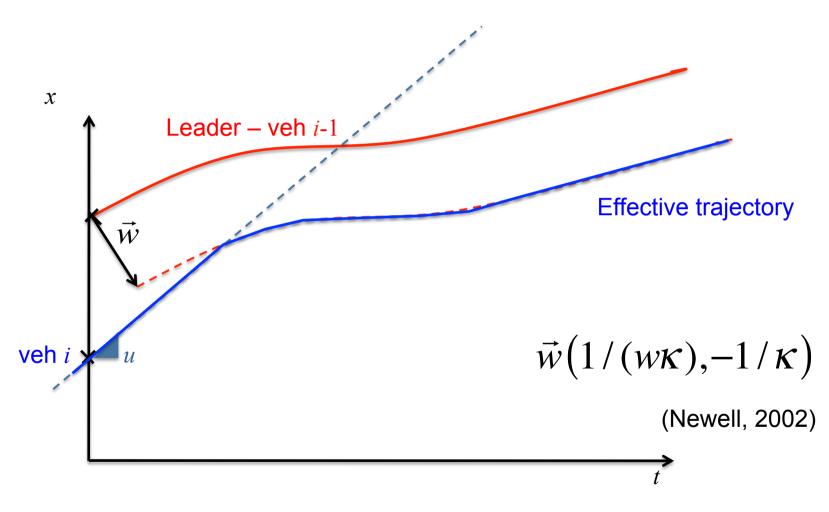
VT in Lagangian - the IVP problem



$$\begin{split} X_{B} &= \min \left(X_{O(\Gamma_{0})} + \Delta(\Gamma_{0}), X_{O(\Gamma_{w\kappa})} + \Delta(\Gamma_{w\kappa}) \right) \\ X_{B} &= X(t,i) = \min \left(\underbrace{X\left(t_{0},i\right) + u.(t-t_{0})}_{\textit{free-flow}}, \underbrace{X\left(t-1/\left(w\kappa\right),i-1\right) - w.(1/w\kappa)}_{\textit{congestion}} \right) \end{split}$$

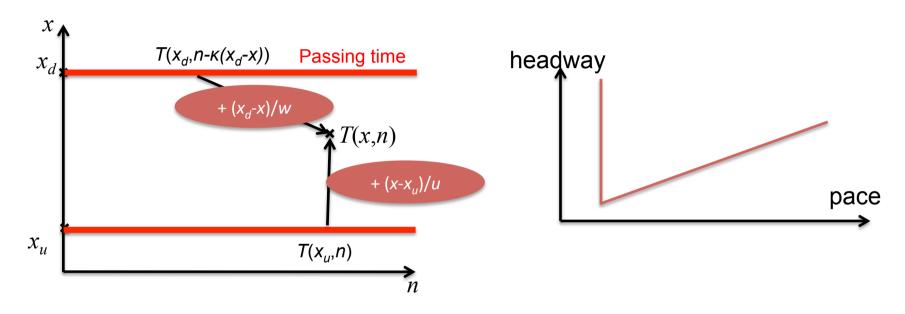
Newell's model again !!! (2002)

Classical formulation of Newell's car-following model



The simplest car-following rule Account for driver reaction time

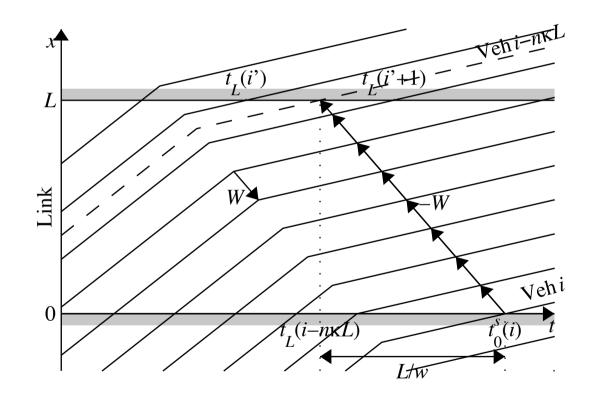
VT in T coordinates



$$T(x,n) = \max \left(\underbrace{T(x_u,n) + \frac{(x-x_u)}{u}}_{free-flow}, \underbrace{T(x_d,n-\kappa(x_d-x)) - \frac{(x_d-x)}{w}}_{congestion} \right)$$

Mesoscopic model (Mahut, 2000; Leclercq & Becarie, 2012)

The mesoscopic LWR model

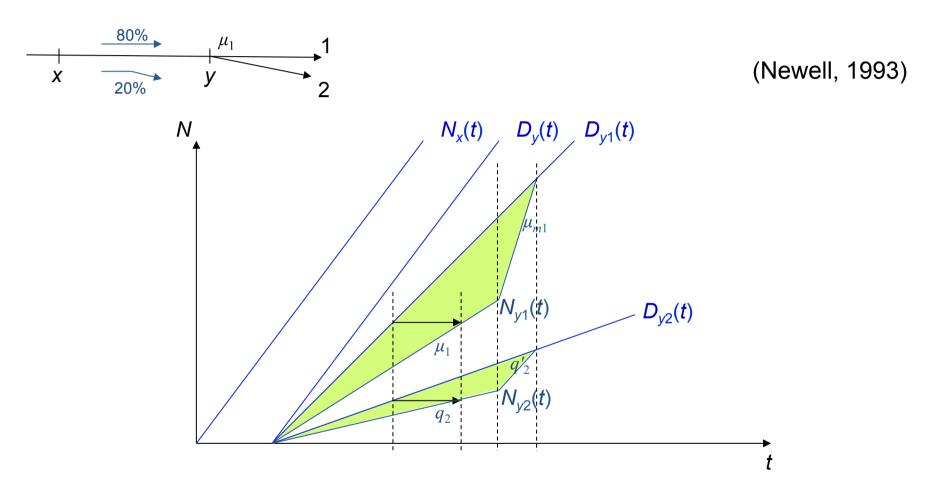


Variational theory - summary

- Variational theory exhibits the connections between the three traffic representations for the LWR model
- A unique model that leads to three solution methods (numerical scheme) corresponding to the three different vision on traffic flow (macroscopic / mesoscopic / microscopic)
- Some previous models appears to be particular cases for the LWR model and a triangular fundamental diagram in different systems of coordinates

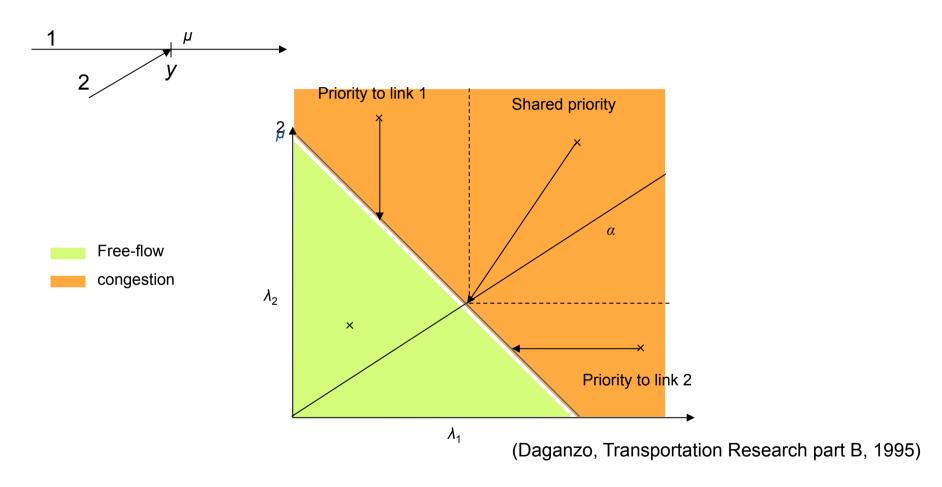
Extensions to the theory

Diverge: Newell's FIFO model



FIFO => Travel times should be equal whatever the destination is

Merge: Daganzo's model

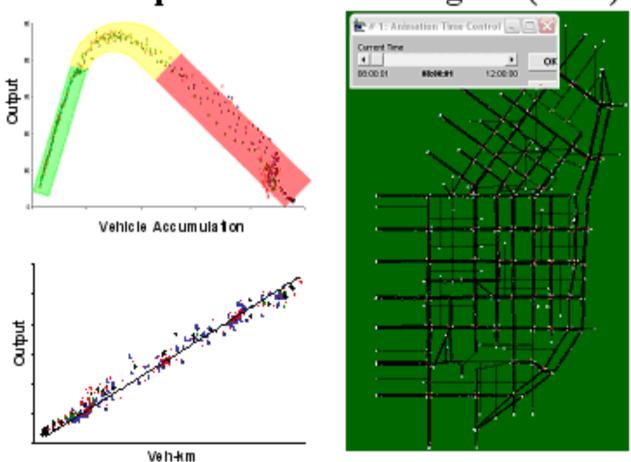


This model has been proved consistent with experimental observations a multitude of times

Other extensions

The network fundamental diagram

Macroscopic Fundamental Diagram (MFD)



Thank you for your attention

LICIT - Ifsttar/Bron and ENTPE

25, avenue François Mitterand 69675 Bron Cedex - FRANCE leclercq@entpe.fr

References

- Daganzo, C.F., 2006b. In traffic flow, cellular automata = kinematic waves. *Transportation Research B*, **40**(5), 396-403.
- Daganzo, C.F., 2005. A variational formulation of kinematic waves: basic theory and complex boundary conditions. *Transportation Research B*, **39**(2), 187-196.
- Daganzo, C.F., 2005b. A variational formulation of kinematic waves: Solution methods. *Transportation Research B*, **39**(10), 934-950.
- Daganzo, C.F., 1995. The cell transmission model, part II: network traffic. *Transportation Research B*, **29**(2), 79-93.
- Daganzo, C.F., 1994. The cell transmission model: A dynamic representation of highway traffic consistent with the hydrodynamic theory. *Transportation Research B*, **28**(4), 269-287.
- Daganzo, C.F., Menendez, M., 2005. A variational formulation of kinematic waves: bottlenecks properties and examples. In: Mahmassani H.S. (Ed.), 16th ISTTT, Elsevier, London, 345-364.
- Edie, L.C., 1963. Discussion of traffic stream measurements and definitions. In: J. Almond (Ed.), 2nd ISTTT, OECD, Paris, 139-154.
- Laval, J.A., Leclercq, L. The Hamilton-Jacobi partial differential equation and the three representations of traffic flow, *Transportation Research part B*, **2013**, accepted for publication.
- Leclercq, L., Laval, J.A., Chevallier, E., 2007. The Lagrangian coordinates and what it means for first order traffic flow models. In: Allsop, R.E., Bell, M.G.H., Heydecker, B.G. (Eds), 17th ISTTT, Elsevier, London, 735-753.
- Gerlough, D.L. et Huber M.J. *Traffic flow theory a monograph*. Special report n°165, Transportation Research Board, Washington. **1975**.
- Lighthill, M.J et Whitham, J.B. On kinematic waves II. A theory of traffic flow in long crowded roads. *Proceedings of the Royal Society*, **1955**, Vol A229, p. 317-345.
- Newell, G.F., 2002. A simplified car-following theory: a low-order model. *Transportation Research B*, **36**(3), 195-205.
- Newell, G.F., 1993. A simplified theory of kinematic waves in highway traffic, I general theory; II queuing at freeway; III multi-destination. *Transportation Research B*, **27**(4), 281-313.
- Richards, P.I., 1956. Shockwaves on the highway. *Operations Research*, **4**, 42-51.

Exercices

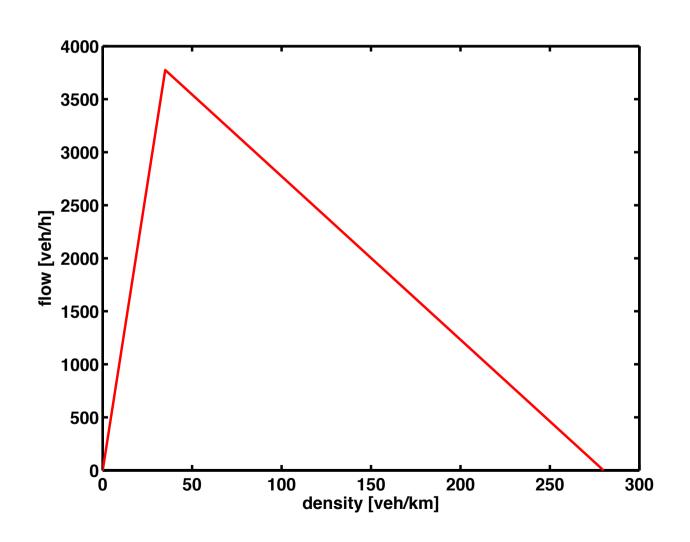
Problem statement

Let consider a freeway with two lanes and the following FD: u=30 m/s; w=4.28 m/s; $\kappa=0.28 \text{ veh/m}$. Two points a et b are respectively located at x=0 m and x=3600 m.

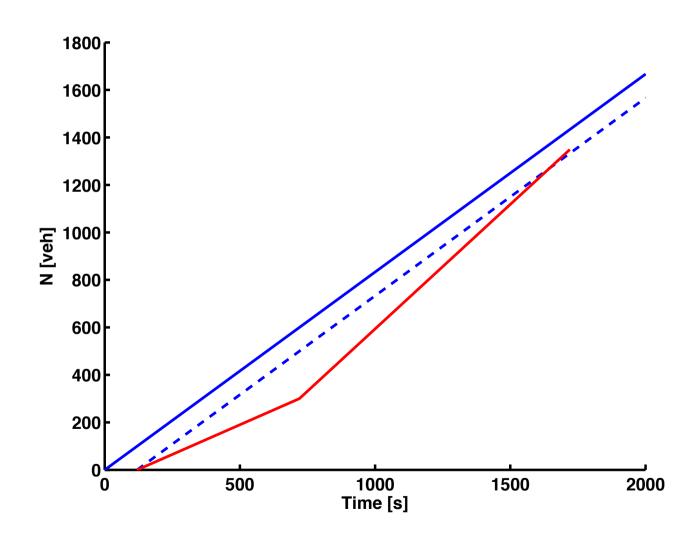
The flow at *a* is constant and equal to 3000 veh/h. At time *t*=120 s, the capacity at is reduced from 1800 veh/h during 10 minutes.

- Draw the fundamental diagram
- Determine the *N*-curve at *x*=3600, *x*=1800, *x*=600 and *x*=0 m
- Provide an estimate for the maximal length of the congestion

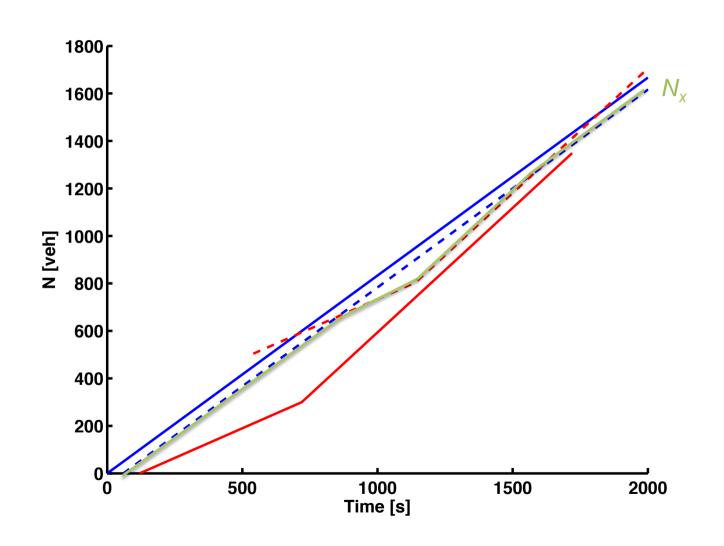
The fundamental diagram



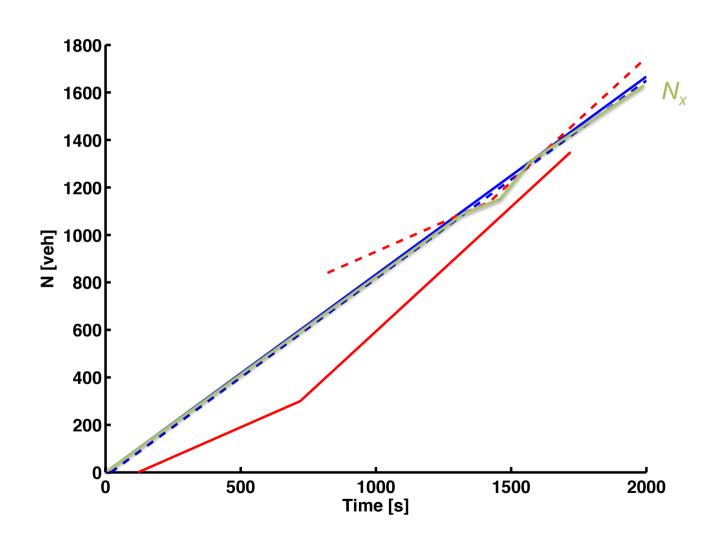
N-curve at x=3600 m



N-curve at x=1800 m



N-curve at x=600 m



N-curve at x=0 m

