Car-Following Behavior at Sags and its Impacts on Traffic Flow

Bernat Goñi Ros, Victor L. Knoop, Bart van Arem, Serge P. Hoogendoorn

Abstract
The aim of this paper is to identify the main factor triggering the formation of congestion at sags. To this end, we analyze vehicle trajectories collected by means of video cameras on a sag in Japan. Our findings indicate that, at similar speeds, drivers tend to keep longer headways on the uphill section than on the downhill section, reducing lane capacity on the uphill section. We also found that, in almost all cases, the formation and growth of traffic flow disturbances on the uphill section is caused by changes in car-following behavior. Disruptive lane changes are a less frequent cause. We conclude that capacity decreases at sags primarily as a result of the changes in car-following behavior that occur on the uphill section.

Data characteristics

Study site
- Yamato sag, Tomei Expressway (near Tokyo, Japan).
- 3 lanes for traffic: median, center and shoulder lanes.
- 10 video cameras: located 120 m apart.

Vehicle trajectories
- Vehicle trajectories obtained from video recordings: one passing time and lane per vehicle per camera location
- Resolution: 120 m, 4-12 seconds
- Data set: 2284 vehicle trajectories (including lane changes +) during the morning peak hour
- Sample:

Objective
Dominant factor: A or B?

Microscopic flow variables

\[
\text{Headway} \quad h_n = \frac{t_n(x_n) - t_{n-1}(x_{n-1})}{\Delta x_n},
\]

\[
\text{Speed} \quad v_n = \frac{x_n - x_{n-1}}{t_n(x_n) - t_{n-1}(x_{n-1})},
\]
When vehicles reach the uphill section, average car-following behavior changes, which reduces lane capacity.

This change in car-following behavior is the dominant factor reducing the capacity of the fast lanes on the uphill section (lane changes are a less important factor).

Conclusions

- Drivers tend to keep longer time headways on the uphill section than on the downhill section at similar speeds.
- This reduces lane capacity on the uphill section.
- The most frequent cause of speed disturbance formation and growth is related to changes in car-following behavior on the uphill section (90% of cases).

When vehicles reach the uphill section, average car-following behavior changes, which reduces lane capacity.

This change in car-following behavior is the dominant factor reducing the capacity of the fast lanes on the uphill section (lane changes are a less important factor).